EHEFT-R: multi-objective task scheduling scheme in cloud computing

Abstract

In cloud computing, task scheduling and resource allocation are the two core issues of the IaaS layer. Efficient task scheduling algorithm can improve the matching efficiency between tasks and resources. In this paper, an enhanced heterogeneous earliest finish time based on rule (EHEFT-R) task scheduling algorithm is proposed to optimize task execution efficiency, quality of service (QoS) and energy consumption. In EHEFT-R, ordering rules based on priority constraints are used to optimize the quality of the initial solution, and the enhanced heterogeneous earliest finish time (HEFT) algorithm is used to ensure the global performance of the solution space. Simulation experiments verify the effectiveness and superiority of EHEFT-R.

Publication
Complex & Intelligent Systems, 8(6), 4475–4482
Zaixing Sun
Zaixing Sun
Ph.D

I am currently pursuing a PhD degree in computer science and technology with the School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China. I am also a visiting student with the Evolutionary Computation Research Group, Centre for Data Science and Artificial Intelligence & School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand. My research interests include cloud computing, intelligent optimisation and scheduling.