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Abstract. In this paper, single-machine scheduling with carbon emission index
is studied. The objective function is to minimize the sum of total flow time and
carbon emission. Firstly, the problem is shown to be NP-hard by Turing
reduction. Then mathematical programming (MP) model is established.
A pseudo-time algorithm based on dynamic programming (DPA) is proposed
for small scale. And a Bird Swarm Algorithm (BSA) is proposed to compete
with DPA. In addition, simulation experiments are used to compare the pro-
posed algorithms. DPA is shown to be more efficient for small scale problem,
and BSA is better for large scale problem.
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1 Introduction

As the most typical scheduling problem, Single-machine scheduling prollem (S-MSP)
is instructive for parallel machine scheduling problem. As a kind of most difficult
combinatorial optimization problem, it is shown to be NP-hard, and attracts much
attention in decades. Since Baker et al. [1] studied single machine scheduling for the
first time, many scholars carry further research on this problem. Brucker et al. [2] prove
that some single machine scheduling and parallel machine scheduling is NP-hard.
Mahdavi et al. [3] study on single-machine scheduling problem to minimize total flow
time and delivery cost, and it’s shown to be NP-hard. As for single machine scheduling
with unavailability intervals, Lee et al. [4] overview researches on this problem. Chu
et al. [5] study on single machine scheduling with unavailability interval to minimize to
minimize weighted completion time, a dynamic programming algorithm and a branch
and bound algorithm is proposed. Yang et al. [6] propose a heuristic algorithm to
minimize max completion time. Yin et al. [7] propose a fully polynomial time algo-
rithm scheduling(PFTAS) based on dynamic programming (DPA) to minimize total
flow time and delivery cost in single machine scheduling with unavailability intervals.
But the study on single machine scheduling with cooling-standby intervals is very
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limited, and it’s meaningful to research on this problem both in academic field and
application field.

With the grim situation of global warming, green manufacturing to decrease carbon
emission attracts more and more attention worldwide. As a modern manufacturing
model, green manufacturing aims to achieve the simultaneous optimization of eco-
nomic and green indexes. That is, guarantee the quality and function of products,
reduce the manufacturing profit, and at the same time to decrease environmental pol-
lution and energy waste. Green scheduling, as an important part of green manufac-
turing, is much more difficult than traditional scheduling problems. Many scholars
study on this subject. Wang et al. [8] overview advances in green shop scheduling and
optimization. Yildirim et al. [9] study on single machine green scheduling to minimize
total completion time and energy consumption, and propose a multi-objective genetic
algorithm to solve it. Liu et al. [10] study single machine scheduling with total com-
pletion time, energy consumption and carbon emission base on the research of Yil-
dirm’s, and an improved genetic algorithm is proposed to solve this problem. Fang
et al. [11] presents a new mathematical programming model of the flow shop
scheduling problem that considers peak power load, energy consumption, and asso-
ciated carbon footprint in addition to cycle time. As shown above, research on green
scheduling problem with both cooling-standby interval and carbon emission consid-
eration is limited.

In this paper, a single-machine green scheduling to minimize the sum of total flow
time and total carbon emission index is studied. The rest of this paper is arranged as
follow: In Sect. 2, the S-MGS-FC problem is described and a mathematical pro-
gramming model is established. In Sect. 3, a dynamic programming algorithm
(DPA) is proposed to optimize the objective function. In Sect. 4, a bird swarm algo-
rithm (BSA) is proposed to optimize S-MGS-FC. In Sect. 5, experiment results and
comparisons of DPA and BSA is provided. And we end this paper with conclusion and
acknowledgement in Sect. 6.

2 Problem 1jCS-IjPFjþ
P

Cj

2.1 Problem Description and the Complexity

S-MGS-FC is described as follows: a job set which contains n independent jobs is
supposed to be processed on single machine. Only one job can be processed at the
same time, and preemption is forbidden while processing. A cooling-standby interval
(C-SI) is set to cool down the machine, on the safe side, accordingly. The C-SI lasts
times, which begins at moment T1 and ends at T2. Job j requires a processing time of pj,
and is available at time zero. All jobs follow shortest processing time(SPT) order. The
objective function is to seek an optimal job sequence to minimize the sum of total flow
time and total carbon emission. The problem is donated as 1jCS-IjPFj þ

P
Cj by

using three-field notation.
And when it comes to the complexity, Turing reduction is used to prove that S-

MGS-FC is NP-hard. Leave out of account of carbon emission, our problem is reduced
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to 1jC � SIjPFj, which is shown to be NP-hard by Yin et al. [12]. And S-MGS-FC,
therefore, is also NP-hard.

2.2 Problem Formulation

As shown in Sect. 2.1, the objective function consists of two parts: total flow time and
total carbon emission. Flow time equals to the sum of each job’s flow time. And total
carbon emission is included with three parts: total processing carbon emission, cooling-
standby carbon emission, and turn-on(off) carbon emission. The function model based
on mathematical programming is established as follows.

Parameters and variables:
aj: arrival time of job j;
pj: processing time of job j;
xj: time to start processing of job j;
n: number of jobs in set N;
e1: energy consumption of processing per minitue;
e2: energy consumption of C-SI per minitue;
e3: energy consumption of turn-on(off) per minitue;
E1: energy consumption of processing;
E2: energy consumption of C-SI;
E3: energy consumption of turn-on(off);
u: energy-carbon conversion coefficient
t1: time of C-SI;
t2: time of turn-on(off);
k: number of jobs processed before C-SI;
dj: delivery time of job j:

Mathematical programming model:

min ZðjÞ ¼
X

Fj þ
X

Cj ð1Þ

s:t:pj � aj; 8j ¼ 1; 2; . . .; n ð2Þ

pj � pjþ 1; 8j ¼ 1; 2; . . .; n� 1 ð3Þ

xj þ pj � dj; 8j ¼ 1; 2; . . .; n ð4Þ

xjþ 1 � xj þ pj; 8j ¼ 1; 2; . . .; n� 1 ð5Þ
X

Fj ¼ np1 þðn� 1Þp2 þ . . .þ pn þðn� kÞt1; 8j ¼ 1; 2; . . .; n ð6Þ
X

Cj ¼
X

pj � e1 � uþ t1 � e2 � uþ t2 � e3 � u; 8j ¼ 1; 2; . . .; n ð7Þ

Function (1) is to minimize the sum of total flow time and total carbon emission of
the entire progress. Constraint (2) ensures the processing of job j js no earlier than its
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arrival time. Constraint (3) ensures all jobs follow SPT order. Constraint (4) ensures the
completion time of job j is no earlier than its delivery time. Constraint (5) ensures the
beginning of job ðjþ 1Þ's processing is no earlier than job j 's completion time.
Function (6) and (7) are detailed explanation of total flow time and total carbon
emission.

3 Dynamic Programming Algorithm (DPA) for S-MGS-FC

In this section, a dynamic programming algorithm (DPA) is proposed to solve the MP
model established in 2.3. Firstly, SPT is to be shown optimal for S-MGS-FC. Then,
three kinds of reasonable states are tobe analyzed. And finally, a dynamic programming
algorithm (DPA) for S-MGS-FC is proposed.

Theorem 3.1. SPT is the optimal order for S-MGS-FC.

Proof. For any processing sequence S ¼ ðc1; c2; . . .; ck; cl; . . .; cnÞ sorted by SPT, i.e.
pk\pl. Suppose there exists a better sequence S

0 ¼ ðc1; c2; . . .; cl; ck; . . .; cnÞ which is
to reduce the function value. S

0
, however, increases the function value, which con-

tradicts the optimality of S. It implies that pk\pl holds for all jobs in an optimal
sequence, and SPY is shown to be the optimal scheduling order for S-MGS-FC.

In what follows, we develop DPA based on Theorem 3.1. There are n steps in total.
The jth step cares about job j’s state Rjðl; c1; c2; tÞ. Meaning of the variables in Rj is
given below:
l: completion time of the last job processed before T1.
c1: number of jobs processed before T1.
c2: number of jobs processed after T2.
t: total flow time and cabon emission of all jobs processed from ð1; 2; . . .; jÞ:

Let Z be the optimal value and U be a large number satisfying Z�U. The DPA is
to be described as follows.
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DPA:

4 Bird Swarm Algorithm (BSA) for S-MGS-FC

4.1 Brief Review of BSA

BSA is proposed by Meng et al. based on the simulation of bird swarm’s foraging
behavior, migration behavior and vigilance behavior. And it’s efficient for optimization
problems.

Forgaing behavior is described as follows:

birdtþ 1
i;j ¼ birdti;j þðpersoni;j � birdti;jÞ � C � randð0; 1Þ

þ ðGi;j � birdti;jÞ � S � randð0; 1Þ
ð8Þ
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Variables in formula (8) are described as follows: birdti;j is the jth dimension of the
ith bird in tth bird swarm generation. And personi;j is the best position of the ith bird’s
jth dimension. And Gi;j is the best position of current bird swarm, C and S are positive
constant.

Vigilance behavior is described as follows:

birdtþ 1
i;j ¼ birdti;j þA1 � ðmeanj � birdti;jÞ � C � randð0; 1Þ

þA2 � ðpk;j � birdti;jÞ � randð�1; 1Þ ð9Þ

A1 ¼ a � expð� pfiti
sumfitþ n

� popsizeÞ ð10Þ

A2 ¼ b � expðð pfiti � pfitk
jpfiti � pfitkj þ n

Þ � popsize � pfitk
sumfitþ n

Þ ð11Þ

Meanings of variables in formula (9)–(11) are as follows: k is a random integer
satisfying k 2 ð1; popsizeÞ, pfiti is the best fitness of the jth bird swarm, sumfit is the
sum of bird swarms in generation, n is a small positive number, meanj is the average of
all swarm’s jth dimension in generation.

Migration behavior is described as follows:

birdtþ 1
i;j ¼ birdti;j þ birdti;j � randnð0; 1Þ ð12Þ

birdtþ 1
i;j ¼ birdti;j þðbirdtk;j � birdti;jÞ � FL � randð0; 1Þ ð13Þ

Meanings of variables in formula (12) and (13) are as follows: k is a random integer
satisfying k 2 ð1; popsizeÞ, FL is a constant satisfying FL 2 ½0; 1�, randnð0; 1Þ is
standard Gaussian number.

4.2 LOV Encoding

Because of the continuous character of the individuals in BSA, canonical BSA cannot
be directly applied to S-MGS-FC. So, the largest-order-value (LOV) encoding rule
based on random key is proposed to convert BSA’s individual Xi ¼ ½xi;1; xi;2; . . .; xi;n� to
job permutation pi;j ¼ ½pi;1; pi;2; . . .; pi;n�. Table 1 illustrates the representation of
vector Xi in BSA for a simple problem.

Table 1. LOV encoding sample

Dimension k 1 2 3 4 5 6

xi;k 1.36 3.85 2.55 0.63 2.68 0.82
ui;k 4 1 3 6 2 5

pi;k 2 5 3 1 6 4
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4.3 Pseudo Code of BSA

The pseudo code of BSA is described as follows:

5 Experiment Results and Comparison

In this section, 10 sets of random number are adopted to test the performance of DPA
and BSA, respectively. That is, n numbers are carried out with f10; 20; 30; . . .; 100g.
The setup of machine is as follows: The cooling-standby interval (C-SI) is set per 4 h
and lasts 30 min. Processing is forbidden during C-SI (e.g., the last job before C-SI will
not be processed if its completion time is later than the beginning of C-SI, and is to be
processed after C-SI. Processing power is set as 63:4kWh per minute, C-SI power is
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37:6kWh per minute, turn-on(off) power is 15kWh per minute and the turn-on(off) time is
45 min. Energy-carbon conversion rate is 0.7559.

Both algorithms are coded by Delphi 7.0 and run on PC with Intel processor i7-
7700 k (4.2 GHz) and 16 GB memory in 10 min. Results and comparisons are shown
at Table 2.

Apparently, from Table 2, DPA performs better than BSA for small scale problem,
and BSA is better for large scale problem. For n ¼ f10; 20; 30; 40g, DPA get the
optimal solution. Because dynamic programming is an exact algorithm. For large scale
problem, however, exact algorithm can not get any solution because of dimension
explosion. BSA, as an intelligent algorithm, is an approximate algorithm, can get
approximate solutions.

6 Conclusions and Further Research

Scheduling problem is one of the most difficult combinational optimization problem.
Single-machine scheduling is the basis of all scheduling problems, and it’s instructive
to parallel machine scheduling. Green scheduling, as core of green manufacturing,
adapts to the world’s development situation. This paper studies single-machine green
scheduling with carbon emission index. Some researchers study on green scheduling
with peak load, carbon footprint, power consumption et al. to the best of the authors’
knowledge, green scheduling has good prospects for development. As for the algo-
rithms, the optimal solution is to be obtained by exact algorithm in theory. When it
comes to large scale problem, however, it becomes non solvable for exact algorithm.
Intelligent algorithm, as one of the approximate algorithms, has advantages in solving
large scale problems, but it’s easy to get trapped in local optimality. The following
research is to combine both exact algorithm and approximate algorithm, solving
complex single-machine green scheduling problem.

Table 2. Comparison of DPA and BSA on 10 sets of jobs

Instance DPA BSA
n Avg Std Aver Std

10 16622.07 0 16629.27 4.78
20 36198.07 0 36312.37 27.35
30 57642.06 0 58131.76 45.11
40 79800.48 0 80830.68 97.78
50 – – 107009.62 138.94
60 – – 135902.65 152.69
70 – – 172763.67 302.71
80 – – 204287.77 321.21
90 – – 249829.34 426.52
100 – – 296174.67 497.07
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