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Abstract
In cloud computing, task scheduling and resource allocation are the two core issues of the IaaS layer. Efficient task scheduling 
algorithm can improve the matching efficiency between tasks and resources. In this paper, an enhanced heterogeneous earliest 
finish time based on rule (EHEFT-R) task scheduling algorithm is proposed to optimize task execution efficiency, quality 
of service (QoS) and energy consumption. In EHEFT-R, ordering rules based on priority constraints are used to optimize 
the quality of the initial solution, and the enhanced heterogeneous earliest finish time (HEFT) algorithm is used to ensure 
the global performance of the solution space. Simulation experiments verify the effectiveness and superiority of EHEFT-R.

Keywords  Cloud computing · Task scheduling · HEFT · QoS · Energy consumption

Introduction

As a computing paradigm with centralized processing, 
cloud computing provides end users with on-demand ser-
vices, thereby enabling various terminal devices with limited 
capabilities to load more complex applications. As of 2020, 
the scale of smart terminal devices has reached 50 billion 
units, the global total number is more than 40ZB, and more 
than half of these data need to be analyzed, processed and 
stored in the cloud [1].

Resource allocation and task scheduling optimization is 
one of the important research problems of cloud computing 
systems, and its solutions are related to the effectiveness of 
resource use and user service experience [2]. In view of the 
heterogeneity of cloud computing resources, the geographi-
cal dispersion of processors, and the optimization require-
ments of power consumption, new challenges are formed for 
resource allocation and task scheduling optimization.

In reference [3], task scheduling problems in cloud com-
puting scenarios are studied and more than 40 optimization 
indicators are summarized. These indicators can be divided 
into three categories: performance indicators, energy con-
sumption indicators, and expenditure indicators. In terms of 
performance indicators, Literature [4] considers the num-
ber of gateways in the cloud computing architecture and the 
occupancy rate of buffers, and defines multiple time delay 
calculation equations. Reference [5] considers the subtask 
deadlines in the workflow, divides tasks into hard dead-
lines and soft deadlines, and considers their legitimacy and 
delay time. Literature [6] integrates response time, network 
congestion and service coverage as the user’s QoS evalua-
tion indicators, and designs a cloud-fog system to reduce 
time delay, improve end-user coverage, and guide the next 
step of resource allocation. In terms of energy consump-
tion, Document [7] minimizes the total energy consump-
tion of cloud computing equipment under the constraints of 
application deadlines. In terms of cost, literature [8] com-
prehensively considers constraints, such as performance 
and virtual machine capacity, and takes the sum of virtual 
machine configuration costs and communication costs as the 
optimization goal to obtain the optimal user base station 
selection, virtual machine matching and other solutions. In 
addition, some other relevant terms of scheduling problems 
and algorithms are as follows. In [13], the IPSO algorithm 
is proposed to improve the efficiency of resource schedul-
ing while facing a large amount of tasks. In [14], a discrete 
imperialist competitive algorithm (DICA) was proposed 
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to minimize the makespan and energy consumption of the 
resource-constrained hybrid flowshop problem (RCHFS). In 
[15], efficient exact algorithms are devised for the multitask-
ing scheduling problems with batch distribution and due date 
assignment (DDA). Reference [16] provides a comprehen-
sive literature review of production scheduling for intelligent 
manufacturing systems with the energy-related constraints 
and objectives, energy efficiency-related publications are 
classified and analyzed according to five criteria.

It can be seen from the above review that although schol-
ars have optimized and solved different indicators of cloud 
computing task scheduling, there is still a lack of compre-
hensive optimization scheduling algorithms. Besides, the 
performance of classic HEFT algorithm is not satisfactory. 
In this paper, an initial scheduling method based on priority 
rule is proposed to improve the performance of HEFT. And 
a novel EHEFT-R task scheduling algorithm is proposed 
based on this method. The contributions of this paper are 
as follows:

1. An initial ranking algorithm based on priority rules 
is designed;
2. An enhanced HEFT algorithm is designed to real-
ize the synchronization of task sorting and processor 
allocation;
3. The multi-objective optimization of makespan, 
energy consumption and QoS.

The remainder of the paper is as follows: the second 
part describes the problem and its models. The third part 
describes the research methodology. The fourth part is 
experiments and data analysis. Finally, the fifth part pre-
sents the conclusion.

Problem description and models

System model

Task scheduling and resource allocation are two sequential 
processes of cloud computing system [9]. The essence of 
task scheduling is to sort different task streams from dif-
ferent users. Resource allocation is to allocate ordered 
tasks to corresponding computing resources, namely vir-
tual machines. Task scheduling is a sorting problem, and 
resource allocation is an assignment problem. Task sched-
uling and resource allocation are combined optimization 
problems, which are NP-hard.

The diagram of the task scheduling model is shown in 
Fig. 1. In the task scheduling model, users send one or 
more groups of computing task requests with priority con-
straints to the cloud server. After receiving the calculation 
request, the data center issues scheduling instructions to the 
task scheduler. After optimizing the scheduling algorithm 

and considering the priority constraints between tasks, the 
scheduler sorts the tasks and returns the sorting results to the 
data center. Subsequently, the data center assigns the sorted 
tasks to cloud computing nodes and subordinate VMs.

DAG priority constraint

The task flow submitted by the user contains many subtasks. 
For the task flow of the same user, these tasks are often 
sequence-related or have strong priority constraints. Taking 
Fig. 2 as an example, suppose that tasks T1–T10 are subtasks 
in a set of task flows of a user. In Fig. 2, T2 can only be 
executed after T1 has completed the calculation. For the task 
flows of different users, as shown in Fig. 1, the task flows of 
different users will be sorted after being mixed. Suppose that 
Fig. 2 is a mixed task flow, and T1–T10 are subtasks in the 
task flow from 10 different users. The subtask T2 from user 
2 needs to be executed after the calculation of the subtask 
T1 of user 1 is completed.

According to the above explanation of priority constraints 
and the morphological characteristics of Fig. 2, the task flow 
with priority constraints can be represented by DAG [9]. 
DAG can be defined as:

According to [9], parameters and variables are 
defined as follows: T represents the set of all tasks, where 
T =

{
Ti|i = 1, 2, ..., n

}
 , in which Ti represents a task in DAG, 

n is the number of tasks. E is the set of edges between tasks, 

(1)G = (T ,E,C,W)

Users(submit task flows)

Task flows(Mixed)

DAGs

Scheduler(task scheduling)

VMs(mapping and Compu�ng)

Fig. 1   System model of task scheduling
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where E =
{
Eij =

(
Ti, Tj

)|Ti, Tj ∈ T , ij
}
 , in which Eij is the 

edge between Ti and. C is the set of communication costs 
between tasks with connections, where C =

{
Cij|ij

}
 , in which 

Cij represents the communication cost between Ti and Tj . W is 
the set of weights of tasks, where W =

{
Wi|i = 1, 2, ..., n

}
 , 

it represents the computation costs of the tasks; for example, 
Wi is the weight of task Ti , which represents the computation 
cost of Ti.

Mathematical models

In this section, mathematical models are designed to evaluate 
makespan, QoS and total energy consumption of the studied 
cloud system.

First, Makespan. In production scheduling, makespan rep-
resents the completion time of the last workpiece, that is, the 
maximum completion time. Similarly, in cloud computing 
task scheduling, makespan represents the time when the last 
subtask is completed, that is, the maximum execution time. 
Mathematically, makespan can be calculated by the equation 
represented by (2):

(2)Cmax = max(

n∑
i=1

Ti,1Fi,1 ⋅ ⋅ ⋅

n∑
i=1

Ti,kFi,k)

(3)where Fi,k =

⎧
⎪⎨⎪⎩

1, if Ti → VMk

0, else

where Ti → VMk means that task Ti is allocated to VM k, Ti,k 
is the execution time of task Ti on VM k.

Second, the total energy consumption. Generally speak-
ing, the energy consumption of cloud computing mainly 
includes CPU, memory, storage and network transmission. 
These devices or processes that generate energy consump-
tion can be divided into two categories, dynamic energy 
consumption and static energy consumption. Dynamic 
energy consumption is the main reason for the huge 
energy consumption of cloud computing centers. At the 
same time, since the static energy consumption is approxi-
mately linear and the dynamic energy consumption is ran-
dom, the optimization of dynamic energy consumption is 
more challenging. We study dynamic energy consumption. 
According to the energy consumption calculation method 
proposed in reference [10], the execution energy consump-
tion is shown in (4) and (5):

where E
T
j

i

 denotes the execution time of task Ti onVM k, Pk 
is the power of VM k, and Ei,k denotes energy consumption 
consumed by task Ti executing on VM k.

Finally, the QoS. QoS is an important indicator for eval-
uating users’ satisfaction with cloud computing services. 
In this paper, what affects user QoS is service efficiency, 
namely makespan. A QoS evaluation formula based on 
makespan is designed, as shown in (6).

where PEFT
i,j

 denotes the earliest completion time of task i on 
the fastest VM j. Since total PEFT

i,j
 is fixed, the less makespan, 

the better QoS.

EHEFT‑R

HEFT algorithm is a classic and efficient static task 
scheduling algorithm. For task scheduling with DAG con-
straints, HEFT algorithm can effectively reduce makespan. 
The design idea of HEFT algorithm is to realize sched-
uling through two stages of task scheduling and virtual 
machine selection according to the order correlation of 
task scheduling and resource allocation.

(4)Ei,k = PkET
j

i

(5)E
busy

total
=

n∑
i=1

m∑
k=1

xijPkET
j

i

(6)
QoS =

min

n∑
i=1

m∑
j=1

PEFT
i,j

Cmax

T1

T2 T3 T4

T5 T6

T7

Fig. 2   DAG of task flow
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Task sequencing phase

Although DAG has strong constraints on the priority of 
tasks, there may be multiple tasks under the same priority, 
so the priority of these tasks at the same level needs to be 
determined before the tasks are sorted.

To determine the priority of tasks at the same level, first 
calculate the rank value of task i by (7). Tasks with a higher 
rank value get higher priority and will be prioritized to the 
virtual machine.

where �i is the average computing cost of task Ti , cij is the 
average communication cost of Ti and Tj , rankTj is rank value 
of task Tj.

VM allocation phase

After the tasks are sorted according to DAG priority and 
rank priority, the second stage is to arrange the tasks on the 
virtual machine. The principle of virtual machine selection 
is the earliest completion time rule, that is, the task TI is 
scheduled to the virtual machine that completes the comput-
ing task earliest.

By priority sorting and virtual machine selection, the two 
stages of HEFT are completed, and the final task scheduling 
plan is obtained after the last task is completed. The steps of 
the HEFT algorithm are summarized as follows:

Step 1. Set communication costs of tasks; set com-
munication costs of edges.
Step 2.Compute rank values of all tasks in reverse 
order, from the exit task to the entry task.

Step 3. Sort the ranked tasks into list Lu , with non-
increasing order of values.

Step 4. Compute EFTs. Take the first task Tu
1
 from Lu , for 

each VM Pm , compute EFT(Tu
1
,Pm) , allocate Tu

1
 to P∗

m
 that 

minimizes EFT of Tu
1
.

Step 5. Repeat the computing of EFTs for all tasks, until 
the last task Tu

last
 is assigned.

(7)rankTi = �i +max(cij + rankTj)

(8)�i =
1

m

m∑
k=1

�i,k

(9)cij = Lk +
dij

Bkl

(10)cij = L +
dij

B

Step 6. Obtain Cmax.

EHEFT‑R

Although HEFT is a classic algorithm that can minimize 
makespan and is widely used in cloud computing task sched-
uling, it has fatal flaws. First, HEFT concentrates only on 
sorts of makespan, which is a single-objective optimiza-
tion algorithm, and it is difficult to achieve feasible results 
when facing multiple objectives. Second, it simply divides 
task scheduling into two stages: task sequencing and virtual 
machine allocation, ignoring the coupling characteristics of 
these two stages, which is also a common problem in two-
stage optimization. According to the two shortcomings of 
HEFT, a rule-based enhanced heft algorithm (EHEFT-R) 
for multi-objective task scheduling is proposed.

In this paper, three indicators of completion time, energy 
consumption and QoS are considered at the same time, and 
HEFT obviously cannot achieve multi-objective optimiza-
tion. Therefore, HEFT is improved to have multi-objective 
optimization scheduling capabilities. According to [9], the 
rank value is composed of calculation cost and communica-
tion cost, both of which only consider the factors of makes-
pan index. Consider incorporating energy consumption and 
QoS into the calculation of rank, as shown in (11):

where �,�,� are weight of makespan, energy and QoS.
In addition, as much as possible, the algorithm should not 

violate the characteristics of the problem itself. Although 
task sequencing and processor selection are order-related, 
they are still a coupled process rather than two independent 
processes. Unlike the classic HEFT algorithm, this paper 
treats task sequencing and virtual machine allocation as par-
allel processes. After one or more tasks determine their exe-
cution order, they are immediately arranged on the virtual 
machine corresponding to the earliest completion time. After 
all tasks are sorted, the virtual machine selection process 
is also approximately completed synchronously, and a task 
sequence π is obtained. Subsequently, since task sequencing 
and virtual machine selection at the same time may cause the 
task sequence to be sub-optimal, π is used as the initial task 
sequence for task-virtual machine remapping. Remapping 
performs virtual machine selection based on rules.

π may not be the optimal ranking because although the 
tasks are sorted according to the rank value from high to low, 
there will be no conflicts between tasks at different prior-
ity levels, and partial optimization can be guaranteed. But 
at the same priority level, similar to task sequencing, the 
rank value does not completely guarantee that tasks at this 
level are allocated to the optimal virtual machine. To solve 
the virtual machine selection priority of tasks of the same 

(11)rankTi = ��i + �max(cij + rankTj ) + �pkei
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level, the remapping rules are formulated as follows: In π, 
start from the task with the highest rank value and check 
in descending order of rank. If two adjacent tasks are not 
in the same layer, the virtual machine assignments of the 
two tasks will not be changed; if two adjacent tasks are in 
the same layer and their earliest completion times fall on 
different virtual machines, the virtual machine allocation 
will not be changed; if two adjacent tasks are in the same 
layer and their earliest completion time falls on the same 
virtual machine, compare the EFT/rank of the two tasks, 
the one with the larger value will be assigned to this virtual 
machine. This rule is called a hybrid SPT rule based on EFT 
and rank (SPT-EFT-R).SPT-EFT-R. The flow of SPT-EFT-R 
is shown in Fig. 3.

Experiments

In this part, a set of small-scale experiments are designed 
to verify the effectiveness of EHEFT-R. Then, five sets of 
benchmark experiments were used to test the performance of 
EHEFT-R. According to [17], sensitivity analysis should be 
performed while there are parameters influencing the itera-
tions and evolutions. In this paper, however, the proposed 
EHEFT-R is designed based on exact rules, and no iteration 

or evolution is concluded. Therefore, sensitivity analysis is 
not performed in this subsection.

Small‑scale experiment

We modified the illustrative example of the literature (Zhao-
tong) for testing. Considering that the energy consumption 
and QoS are not calculated in the experiment in [9], the 
energy consumption information table has been added, as 
shown in Table 1.

It can be seen from Table 2 that in the experiment of [9], 
EHEFT-R has the best three indicators of makespan, energy 
consumption and QoS. Therefore, the EHEFT-R proposed 
in this paper is effective.

Large‑scale benchmark

In this subpart, the benchmark datasets provided by [11] are 
used to compare EHEFT-R, algorithms proposed in refer-
ence [12], and HEFT. According to [12], the problem cases 
are classified into 12 categories in the benchmark, and 100 
different cases are included in each category. Each problem 
case in dataset records the makespan and energy consump-
tion for the 512_16 data, i.e. 512 tasks assigned to 16 VMs. 
Any VM in the dataset is consistent, inconsistent, or semi-
consistent in terms of consistency configurations. Task het-
erogeneity and VM heterogeneity could be high or low for 
different configurations of the VM. In this way, 12 problem 

Fig. 3   SPT-EFT-R

Table 1   Unit energy 
consumption

T
i

E
1

E
2

E
3

T
1

132 98 102
T
2

165 291 201
T
3

146 35 192
T
4

210 180 161
T
5

391 340 290
T
6

190 160 140
T
7

98 81 151
T
8

41 20 69
T
9

193 152 201

Table 2   Small-scale experiment

Makespan Energy consump-
tion

QoS

EHEFT-R 88 3487 1.7159
QL-HEFT 90 3563 1.6778
HEFT-D 97 4016 1.5567
HEFT-U 99 4095 1.5253
CPOP 116 4817 1.3017
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cases arise out of the 12 combinations of consistency, task 
heterogeneity and machine heterogeneity.

Table 3 shows the comparative results for the 12 VMs. 
From the results, it is evident that EHEFT-R is better than 
NSGA-II and HEFT for both makespan and energy con-
sumption. For detailed comparison of the algorithms, the 

indicator histograms of u-c, u-i and u-s are drawn, as shown 
in Figs. 4, 5, 6, 7, 8 and 9. Figures 4 and 5 list the compari-
son of the results in the four cases of c-hihi, c-lohi, c-hilo 
and c-lolo. Figures 6 and 7 list the comparison of the results 
in the four cases of i-hihi, i-hilo, i-lohi and i-lolo. Figures 8 
and 9 list the comparison of the results in the four cases of 

Table 3   Large-scale benchmark VMs Makespan (min) Energy consumption (kWh)

HEFT NSGA-II EHEFT-R HEFT NSGA-II EHEFT-R

c-hihi 181 134 106 23,150 18,924 16,926
c-lohi 174 128 105 22,847 18,084 16,915
c-hilo 169 130 106 22,796 18,241 16,926
c-lolo 182 134 101 23,215 18,924 16,251
i-hihi 98 67 52 13,084 8173 7048
i-lohi 94 58 54 12,597 7763 7256
i-hilo 81 67 48 10,194 8173 6752
i-lolo 82 59 50 10,236 7794 6982
s-hihi 207 175 84 6452 3470 1695
s-hilo 93 58 53 4207 3760 2870
s-lohi 81 63 39 5926 5076 3008
s-lolo 81 38 29 5156 4356 3983

Fig. 4   u-c experiments on makespan

Fig. 5   u-c experiments on energy consumption

Fig. 6   u-i experiments on makespan

Fig. 7   u-i experiments on energy consumption
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s-hihi, s-hilo, s-lohi and s-lolo. From three sets of detailed 
comparison histograms, EHEFT-R has achieved better 
results than NSGA-II and HEFT in 12 cases, which verifies 
the effectiveness and superiority of the proposed algorithm.

Conclusion

In this paper, we proposed an novel EHEFT-R task schedul-
ing algorithm to solve the static task scheduling problem in 
the cloud computing environment. The design of EHEFT-R 
considers two key points. One is to solve the segmentation 
optimization defect of HEFT through the synchronization 
of task sequencing and resource allocation, and the other is 
to optimize the local search of the sequencing that may be 
caused by remapping resource allocation.

Finally, we designed two sets of experiments to compare 
EHEFT-R with other algorithms. The evaluation indicators 
are makespan, energy consumption and QoS. First, com-
pare EHEFT-R, QL-HEFT, HEFT-D, HEFT-U and CPOP 
in small-scale experiments. Experimental results show that 
EHEFT is far superior to the other four algorithms. For large-
scale problems, EHEFT-R, EGA and NSGAII are compared 

in the standard test set. The test results show that in a large-
scale experimental environment, EHEFT-R obtains much 
better solutions than both two other algorithms.

Two key points make EHEFT-R performing better. First, 
reasonable sorting rules. Compared with HEFT, proposed 
EHEFT-R takes the coupling properties of task sequencing 
and virtual machine selection under consideration. Second, 
remapping and rescheduling. The rescheduling mechanism 
ensures the quality of the solution, avoids falling into local 
optimization, and enhances the ability of local optimization.

Although HEFT is not a well-designed algorithm, it still 
provides inspiration for our future research. Classic HEFT 
algorithm regards two coupled processes as two independent 
processes, which is wrong and inefficient, but we can get two 
relatively independent research objects through decoupling.
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