
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:4475–4482
https://doi.org/10.1007/s40747-021-00479-7

ORIGINAL ARTICLE

EHEFT‑R: multi‑objective task scheduling scheme in cloud computing

Honglin Zhang1 · Yaohua Wu1 · Zaixing Sun2

Received: 2 April 2021 / Accepted: 19 July 2021 / Published online: 31 July 2021
© The Author(s) 2021

Abstract
In cloud computing, task scheduling and resource allocation are the two core issues of the IaaS layer. Efficient task scheduling
algorithm can improve the matching efficiency between tasks and resources. In this paper, an enhanced heterogeneous earliest
finish time based on rule (EHEFT-R) task scheduling algorithm is proposed to optimize task execution efficiency, quality
of service (QoS) and energy consumption. In EHEFT-R, ordering rules based on priority constraints are used to optimize
the quality of the initial solution, and the enhanced heterogeneous earliest finish time (HEFT) algorithm is used to ensure
the global performance of the solution space. Simulation experiments verify the effectiveness and superiority of EHEFT-R.

Keywords  Cloud computing · Task scheduling · HEFT · QoS · Energy consumption

Introduction

As a computing paradigm with centralized processing,
cloud computing provides end users with on-demand ser-
vices, thereby enabling various terminal devices with limited
capabilities to load more complex applications. As of 2020,
the scale of smart terminal devices has reached 50 billion
units, the global total number is more than 40ZB, and more
than half of these data need to be analyzed, processed and
stored in the cloud [1].

Resource allocation and task scheduling optimization is
one of the important research problems of cloud computing
systems, and its solutions are related to the effectiveness of
resource use and user service experience [2]. In view of the
heterogeneity of cloud computing resources, the geographi-
cal dispersion of processors, and the optimization require-
ments of power consumption, new challenges are formed for
resource allocation and task scheduling optimization.

In reference [3], task scheduling problems in cloud com-
puting scenarios are studied and more than 40 optimization
indicators are summarized. These indicators can be divided
into three categories: performance indicators, energy con-
sumption indicators, and expenditure indicators. In terms of
performance indicators, Literature [4] considers the num-
ber of gateways in the cloud computing architecture and the
occupancy rate of buffers, and defines multiple time delay
calculation equations. Reference [5] considers the subtask
deadlines in the workflow, divides tasks into hard dead-
lines and soft deadlines, and considers their legitimacy and
delay time. Literature [6] integrates response time, network
congestion and service coverage as the user’s QoS evalua-
tion indicators, and designs a cloud-fog system to reduce
time delay, improve end-user coverage, and guide the next
step of resource allocation. In terms of energy consump-
tion, Document [7] minimizes the total energy consump-
tion of cloud computing equipment under the constraints of
application deadlines. In terms of cost, literature [8] com-
prehensively considers constraints, such as performance
and virtual machine capacity, and takes the sum of virtual
machine configuration costs and communication costs as the
optimization goal to obtain the optimal user base station
selection, virtual machine matching and other solutions. In
addition, some other relevant terms of scheduling problems
and algorithms are as follows. In [13], the IPSO algorithm
is proposed to improve the efficiency of resource schedul-
ing while facing a large amount of tasks. In [14], a discrete
imperialist competitive algorithm (DICA) was proposed

 *	 Honglin Zhang
	 201920522@mail.sdu.edu.cn

	 Yaohua Wu
	 MIKE.WU@263.NET

	 Zaixing Sun
	 Szx_1010@stu.hit.edu.cn

1	 Faculty of Control Science and Engineering, Shandong
University, Jinan, China

2	 School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00479-7&domain=pdf

4476	 Complex & Intelligent Systems (2022) 8:4475–4482

1 3

to minimize the makespan and energy consumption of the
resource-constrained hybrid flowshop problem (RCHFS). In
[15], efficient exact algorithms are devised for the multitask-
ing scheduling problems with batch distribution and due date
assignment (DDA). Reference [16] provides a comprehen-
sive literature review of production scheduling for intelligent
manufacturing systems with the energy-related constraints
and objectives, energy efficiency-related publications are
classified and analyzed according to five criteria.

It can be seen from the above review that although schol-
ars have optimized and solved different indicators of cloud
computing task scheduling, there is still a lack of compre-
hensive optimization scheduling algorithms. Besides, the
performance of classic HEFT algorithm is not satisfactory.
In this paper, an initial scheduling method based on priority
rule is proposed to improve the performance of HEFT. And
a novel EHEFT-R task scheduling algorithm is proposed
based on this method. The contributions of this paper are
as follows:

1. An initial ranking algorithm based on priority rules
is designed;
2. An enhanced HEFT algorithm is designed to real-
ize the synchronization of task sorting and processor
allocation;
3. The multi-objective optimization of makespan,
energy consumption and QoS.

The remainder of the paper is as follows: the second
part describes the problem and its models. The third part
describes the research methodology. The fourth part is
experiments and data analysis. Finally, the fifth part pre-
sents the conclusion.

Problem description and models

System model

Task scheduling and resource allocation are two sequential
processes of cloud computing system [9]. The essence of
task scheduling is to sort different task streams from dif-
ferent users. Resource allocation is to allocate ordered
tasks to corresponding computing resources, namely vir-
tual machines. Task scheduling is a sorting problem, and
resource allocation is an assignment problem. Task sched-
uling and resource allocation are combined optimization
problems, which are NP-hard.

The diagram of the task scheduling model is shown in
Fig. 1. In the task scheduling model, users send one or
more groups of computing task requests with priority con-
straints to the cloud server. After receiving the calculation
request, the data center issues scheduling instructions to the
task scheduler. After optimizing the scheduling algorithm

and considering the priority constraints between tasks, the
scheduler sorts the tasks and returns the sorting results to the
data center. Subsequently, the data center assigns the sorted
tasks to cloud computing nodes and subordinate VMs.

DAG priority constraint

The task flow submitted by the user contains many subtasks.
For the task flow of the same user, these tasks are often
sequence-related or have strong priority constraints. Taking
Fig. 2 as an example, suppose that tasks T1–T10 are subtasks
in a set of task flows of a user. In Fig. 2, T2 can only be
executed after T1 has completed the calculation. For the task
flows of different users, as shown in Fig. 1, the task flows of
different users will be sorted after being mixed. Suppose that
Fig. 2 is a mixed task flow, and T1–T10 are subtasks in the
task flow from 10 different users. The subtask T2 from user
2 needs to be executed after the calculation of the subtask
T1 of user 1 is completed.

According to the above explanation of priority constraints
and the morphological characteristics of Fig. 2, the task flow
with priority constraints can be represented by DAG [9].
DAG can be defined as:

According to [9], parameters and variables are
defined as follows: T represents the set of all tasks, where
T =

{
Ti|i = 1, 2, ..., n

}
 , in which Ti represents a task in DAG,

n is the number of tasks. E is the set of edges between tasks,

(1)G = (T ,E,C,W)

Users(submit task flows)

Task flows(Mixed)

DAGs

Scheduler(task scheduling)

VMs(mapping and Compu�ng)

Fig. 1   System model of task scheduling

4477Complex & Intelligent Systems (2022) 8:4475–4482	

1 3

where E =
{
Eij =

(
Ti, Tj

)|Ti, Tj ∈ T , ij
}
 , in which Eij is the

edge between Ti and. C is the set of communication costs
between tasks with connections, where C =

{
Cij|ij

}
 , in which

Cij represents the communication cost between Ti and Tj . W is
the set of weights of tasks, where W =

{
Wi|i = 1, 2, ..., n

}
 ,

it represents the computation costs of the tasks; for example,
Wi is the weight of task Ti , which represents the computation
cost of Ti.

Mathematical models

In this section, mathematical models are designed to evaluate
makespan, QoS and total energy consumption of the studied
cloud system.

First, Makespan. In production scheduling, makespan rep-
resents the completion time of the last workpiece, that is, the
maximum completion time. Similarly, in cloud computing
task scheduling, makespan represents the time when the last
subtask is completed, that is, the maximum execution time.
Mathematically, makespan can be calculated by the equation
represented by (2):

(2)Cmax = max(

n∑
i=1

Ti,1Fi,1 ⋅ ⋅ ⋅

n∑
i=1

Ti,kFi,k)

(3)where Fi,k =

⎧
⎪⎨⎪⎩

1, if Ti → VMk

0, else

where Ti → VMk means that task Ti is allocated to VM k, Ti,k
is the execution time of task Ti on VM k.

Second, the total energy consumption. Generally speak-
ing, the energy consumption of cloud computing mainly
includes CPU, memory, storage and network transmission.
These devices or processes that generate energy consump-
tion can be divided into two categories, dynamic energy
consumption and static energy consumption. Dynamic
energy consumption is the main reason for the huge
energy consumption of cloud computing centers. At the
same time, since the static energy consumption is approxi-
mately linear and the dynamic energy consumption is ran-
dom, the optimization of dynamic energy consumption is
more challenging. We study dynamic energy consumption.
According to the energy consumption calculation method
proposed in reference [10], the execution energy consump-
tion is shown in (4) and (5):

where E
T
j

i

 denotes the execution time of task Ti onVM k, Pk
is the power of VM k, and Ei,k denotes energy consumption
consumed by task Ti executing on VM k.

Finally, the QoS. QoS is an important indicator for eval-
uating users’ satisfaction with cloud computing services.
In this paper, what affects user QoS is service efficiency,
namely makespan. A QoS evaluation formula based on
makespan is designed, as shown in (6).

where PEFT
i,j

 denotes the earliest completion time of task i on
the fastest VM j. Since total PEFT

i,j
 is fixed, the less makespan,

the better QoS.

EHEFT‑R

HEFT algorithm is a classic and efficient static task
scheduling algorithm. For task scheduling with DAG con-
straints, HEFT algorithm can effectively reduce makespan.
The design idea of HEFT algorithm is to realize sched-
uling through two stages of task scheduling and virtual
machine selection according to the order correlation of
task scheduling and resource allocation.

(4)Ei,k = PkET
j

i

(5)E
busy

total
=

n∑
i=1

m∑
k=1

xijPkET
j

i

(6)
QoS =

min

n∑
i=1

m∑
j=1

PEFT
i,j

Cmax

T1

T2 T3 T4

T5 T6

T7

Fig. 2   DAG of task flow

4478	 Complex & Intelligent Systems (2022) 8:4475–4482

1 3

Task sequencing phase

Although DAG has strong constraints on the priority of
tasks, there may be multiple tasks under the same priority,
so the priority of these tasks at the same level needs to be
determined before the tasks are sorted.

To determine the priority of tasks at the same level, first
calculate the rank value of task i by (7). Tasks with a higher
rank value get higher priority and will be prioritized to the
virtual machine.

where �i is the average computing cost of task Ti , cij is the
average communication cost of Ti and Tj , rankTj is rank value
of task Tj.

VM allocation phase

After the tasks are sorted according to DAG priority and
rank priority, the second stage is to arrange the tasks on the
virtual machine. The principle of virtual machine selection
is the earliest completion time rule, that is, the task TI is
scheduled to the virtual machine that completes the comput-
ing task earliest.

By priority sorting and virtual machine selection, the two
stages of HEFT are completed, and the final task scheduling
plan is obtained after the last task is completed. The steps of
the HEFT algorithm are summarized as follows:

Step 1. Set communication costs of tasks; set com-
munication costs of edges.
Step 2.Compute rank values of all tasks in reverse
order, from the exit task to the entry task.

Step 3. Sort the ranked tasks into list Lu , with non-
increasing order of values.

Step 4. Compute EFTs. Take the first task Tu
1
 from Lu , for

each VM Pm , compute EFT(Tu
1
,Pm) , allocate Tu

1
 to P∗

m
 that

minimizes EFT of Tu
1
.

Step 5. Repeat the computing of EFTs for all tasks, until
the last task Tu

last
 is assigned.

(7)rankTi = �i +max(cij + rankTj)

(8)�i =
1

m

m∑
k=1

�i,k

(9)cij = Lk +
dij

Bkl

(10)cij = L +
dij

B

Step 6. Obtain Cmax.

EHEFT‑R

Although HEFT is a classic algorithm that can minimize
makespan and is widely used in cloud computing task sched-
uling, it has fatal flaws. First, HEFT concentrates only on
sorts of makespan, which is a single-objective optimiza-
tion algorithm, and it is difficult to achieve feasible results
when facing multiple objectives. Second, it simply divides
task scheduling into two stages: task sequencing and virtual
machine allocation, ignoring the coupling characteristics of
these two stages, which is also a common problem in two-
stage optimization. According to the two shortcomings of
HEFT, a rule-based enhanced heft algorithm (EHEFT-R)
for multi-objective task scheduling is proposed.

In this paper, three indicators of completion time, energy
consumption and QoS are considered at the same time, and
HEFT obviously cannot achieve multi-objective optimiza-
tion. Therefore, HEFT is improved to have multi-objective
optimization scheduling capabilities. According to [9], the
rank value is composed of calculation cost and communica-
tion cost, both of which only consider the factors of makes-
pan index. Consider incorporating energy consumption and
QoS into the calculation of rank, as shown in (11):

where �,�,� are weight of makespan, energy and QoS.
In addition, as much as possible, the algorithm should not

violate the characteristics of the problem itself. Although
task sequencing and processor selection are order-related,
they are still a coupled process rather than two independent
processes. Unlike the classic HEFT algorithm, this paper
treats task sequencing and virtual machine allocation as par-
allel processes. After one or more tasks determine their exe-
cution order, they are immediately arranged on the virtual
machine corresponding to the earliest completion time. After
all tasks are sorted, the virtual machine selection process
is also approximately completed synchronously, and a task
sequence π is obtained. Subsequently, since task sequencing
and virtual machine selection at the same time may cause the
task sequence to be sub-optimal, π is used as the initial task
sequence for task-virtual machine remapping. Remapping
performs virtual machine selection based on rules.

π may not be the optimal ranking because although the
tasks are sorted according to the rank value from high to low,
there will be no conflicts between tasks at different prior-
ity levels, and partial optimization can be guaranteed. But
at the same priority level, similar to task sequencing, the
rank value does not completely guarantee that tasks at this
level are allocated to the optimal virtual machine. To solve
the virtual machine selection priority of tasks of the same

(11)rankTi = ��i + �max(cij + rankTj) + �pkei

4479Complex & Intelligent Systems (2022) 8:4475–4482	

1 3

level, the remapping rules are formulated as follows: In π,
start from the task with the highest rank value and check
in descending order of rank. If two adjacent tasks are not
in the same layer, the virtual machine assignments of the
two tasks will not be changed; if two adjacent tasks are in
the same layer and their earliest completion times fall on
different virtual machines, the virtual machine allocation
will not be changed; if two adjacent tasks are in the same
layer and their earliest completion time falls on the same
virtual machine, compare the EFT/rank of the two tasks,
the one with the larger value will be assigned to this virtual
machine. This rule is called a hybrid SPT rule based on EFT
and rank (SPT-EFT-R).SPT-EFT-R. The flow of SPT-EFT-R
is shown in Fig. 3.

Experiments

In this part, a set of small-scale experiments are designed
to verify the effectiveness of EHEFT-R. Then, five sets of
benchmark experiments were used to test the performance of
EHEFT-R. According to [17], sensitivity analysis should be
performed while there are parameters influencing the itera-
tions and evolutions. In this paper, however, the proposed
EHEFT-R is designed based on exact rules, and no iteration

or evolution is concluded. Therefore, sensitivity analysis is
not performed in this subsection.

Small‑scale experiment

We modified the illustrative example of the literature (Zhao-
tong) for testing. Considering that the energy consumption
and QoS are not calculated in the experiment in [9], the
energy consumption information table has been added, as
shown in Table 1.

It can be seen from Table 2 that in the experiment of [9],
EHEFT-R has the best three indicators of makespan, energy
consumption and QoS. Therefore, the EHEFT-R proposed
in this paper is effective.

Large‑scale benchmark

In this subpart, the benchmark datasets provided by [11] are
used to compare EHEFT-R, algorithms proposed in refer-
ence [12], and HEFT. According to [12], the problem cases
are classified into 12 categories in the benchmark, and 100
different cases are included in each category. Each problem
case in dataset records the makespan and energy consump-
tion for the 512_16 data, i.e. 512 tasks assigned to 16 VMs.
Any VM in the dataset is consistent, inconsistent, or semi-
consistent in terms of consistency configurations. Task het-
erogeneity and VM heterogeneity could be high or low for
different configurations of the VM. In this way, 12 problem

Fig. 3   SPT-EFT-R

Table 1   Unit energy
consumption

T
i

E
1

E
2

E
3

T
1

132 98 102
T
2

165 291 201
T
3

146 35 192
T
4

210 180 161
T
5

391 340 290
T
6

190 160 140
T
7

98 81 151
T
8

41 20 69
T
9

193 152 201

Table 2   Small-scale experiment

Makespan Energy consump-
tion

QoS

EHEFT-R 88 3487 1.7159
QL-HEFT 90 3563 1.6778
HEFT-D 97 4016 1.5567
HEFT-U 99 4095 1.5253
CPOP 116 4817 1.3017

4480	 Complex & Intelligent Systems (2022) 8:4475–4482

1 3

cases arise out of the 12 combinations of consistency, task
heterogeneity and machine heterogeneity.

Table 3 shows the comparative results for the 12 VMs.
From the results, it is evident that EHEFT-R is better than
NSGA-II and HEFT for both makespan and energy con-
sumption. For detailed comparison of the algorithms, the

indicator histograms of u-c, u-i and u-s are drawn, as shown
in Figs. 4, 5, 6, 7, 8 and 9. Figures 4 and 5 list the compari-
son of the results in the four cases of c-hihi, c-lohi, c-hilo
and c-lolo. Figures 6 and 7 list the comparison of the results
in the four cases of i-hihi, i-hilo, i-lohi and i-lolo. Figures 8
and 9 list the comparison of the results in the four cases of

Table 3   Large-scale benchmark VMs Makespan (min) Energy consumption (kWh)

HEFT NSGA-II EHEFT-R HEFT NSGA-II EHEFT-R

c-hihi 181 134 106 23,150 18,924 16,926
c-lohi 174 128 105 22,847 18,084 16,915
c-hilo 169 130 106 22,796 18,241 16,926
c-lolo 182 134 101 23,215 18,924 16,251
i-hihi 98 67 52 13,084 8173 7048
i-lohi 94 58 54 12,597 7763 7256
i-hilo 81 67 48 10,194 8173 6752
i-lolo 82 59 50 10,236 7794 6982
s-hihi 207 175 84 6452 3470 1695
s-hilo 93 58 53 4207 3760 2870
s-lohi 81 63 39 5926 5076 3008
s-lolo 81 38 29 5156 4356 3983

Fig. 4   u-c experiments on makespan

Fig. 5   u-c experiments on energy consumption

Fig. 6   u-i experiments on makespan

Fig. 7   u-i experiments on energy consumption

4481Complex & Intelligent Systems (2022) 8:4475–4482	

1 3

s-hihi, s-hilo, s-lohi and s-lolo. From three sets of detailed
comparison histograms, EHEFT-R has achieved better
results than NSGA-II and HEFT in 12 cases, which verifies
the effectiveness and superiority of the proposed algorithm.

Conclusion

In this paper, we proposed an novel EHEFT-R task schedul-
ing algorithm to solve the static task scheduling problem in
the cloud computing environment. The design of EHEFT-R
considers two key points. One is to solve the segmentation
optimization defect of HEFT through the synchronization
of task sequencing and resource allocation, and the other is
to optimize the local search of the sequencing that may be
caused by remapping resource allocation.

Finally, we designed two sets of experiments to compare
EHEFT-R with other algorithms. The evaluation indicators
are makespan, energy consumption and QoS. First, com-
pare EHEFT-R, QL-HEFT, HEFT-D, HEFT-U and CPOP
in small-scale experiments. Experimental results show that
EHEFT is far superior to the other four algorithms. For large-
scale problems, EHEFT-R, EGA and NSGAII are compared

in the standard test set. The test results show that in a large-
scale experimental environment, EHEFT-R obtains much
better solutions than both two other algorithms.

Two key points make EHEFT-R performing better. First,
reasonable sorting rules. Compared with HEFT, proposed
EHEFT-R takes the coupling properties of task sequencing
and virtual machine selection under consideration. Second,
remapping and rescheduling. The rescheduling mechanism
ensures the quality of the solution, avoids falling into local
optimization, and enhances the ability of local optimization.

Although HEFT is not a well-designed algorithm, it still
provides inspiration for our future research. Classic HEFT
algorithm regards two coupled processes as two independent
processes, which is wrong and inefficient, but we can get two
relatively independent research objects through decoupling.

Acknowledgements  Honglin Zhang would like to thank Prof. Yin Yun-
qiang for his kind advice on algorithm design. Prof. Yin’s Optimization
Theory course is the source of some of the ideas in this paper.

Declarations 

Conflict of interest  The corresponding author states that there is no
conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Gupta R (2012) Above the clouds: a view of cloud computing.
Eecs Dept Univ Calif Berkeley 53(4):50–58

	 2.	 Liu C, Li K, Li K et al (2017) A new service mechanism for profit
optimizations of a cloud provider and its users. IEEE Trans Cloud
Comput 2017:1–1

	 3.	 BellendorfJulian MZD (2020) Classification of optimization prob-
lems in fog computing. Fut Gen Comput Syst 107:158–176

	 4.	 Desikan K, Srinivasan M, Murthy C (2017) A novel distributed
latency-aware data processing in fog computing-enabled IoT net-
works. ACM 1–6

	 5.	 Wu CG, Wang L (2019) A deadline-aware estimation of distribu-
tion algorithm for resource scheduling in fog computing systems.
In: 2019 IEEE Congress on Evolutionary Computation (CEC).
IEEE

	 6.	 Lin Y, Shen H (2015) IEEE 2015 44th International Confer-
ence on Parallel Processing (ICPP) - Beijing, China (2015.9.1–
2015.9.4) 2015 44th International Conference on Parallel Process-
ing - Cloud Fog: Towards High Quality of Experience in Cloud

Fig. 8   u-s experiments on makespan

Fig. 9   u-s experiments on energy consumption

http://creativecommons.org/licenses/by/4.0/

4482	 Complex & Intelligent Systems (2022) 8:4475–4482

1 3

Gaming[C]// International Conference on Parallel Processing.
IEEE, 2015:500–509

	 7.	 Deng R, Lu R, Lai C et al (2017) Optimal workload allocation in
fog-cloud computing toward balanced delay and power consump-
tion. IEEE Internet Things J 3(6):1171–1181

	 8.	 Gu L, Zeng D, Guo S (2017) Cost efficient resource management
in fog computing supported medical cyber-physical system. IEEE
Trans Emerg Top Comput 5(1):108–119

	 9.	 Tong Z, Deng X, H Chen et al (2019) QL-HEFT: a novel machine
learning scheduling scheme base on cloud computing environ-
ment. Neural Comput Appl

	10.	 Wang X, Wang Y, Yue C (2016) An energy-aware bi-level opti-
mization model for multi-job scheduling problems under cloud
computing. Soft Comput 20(1)

	11.	 Yan S, Lin F, Xu H (2018) Multi-objective optimization of
resource scheduling in fog computing using an improved NSGA-
II. Wireless Pers Commun 102(1):1–17

	12.	 Hussain M, Wei LF, Lakhan A et al (2021) Energy and perfor-
mance-efficient task scheduling in heterogeneous virtualized
cloud computing. Sustain Comput Inf Syst 30(3):100517

	13.	 Yu H (2020) Evaluation of cloud computing resource scheduling
based on improved optimization algorithm. Complex Intell Syst
2020:1–6

	14.	 Tao XR, Li JQ, Huang TH et al (2020) Discrete imperialist com-
petitive algorithm for the resource-constrained hybrid flowshop
problem with energy consumption. Complex Intell Syst 7(1):311

	15.	 Xu X, Yin G, Wang C (2020) Multitasking scheduling with
batch distribution and due date assignment. Complex Intell Syst
7(1):191

	16.	 Gao K, Huang Y, Sadollah A et al (2019) A review of energy-
efficient scheduling in intelligent production systems. Complex
Intell Syst 6(23):237–249

	17.	 He L, Li W, Zhang Y et al (2019) A discrete multi-objective fire-
works algorithm for flowshop scheduling with sequence-depend-
ent setup times. Swarm Evolut Comput 51:100575

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	EHEFT-R: multi-objective task scheduling scheme in cloud computing
	Abstract
	Introduction
	Problem description and models
	System model
	DAG priority constraint
	Mathematical models
	EHEFT-R
	Task sequencing phase
	VM allocation phase
	EHEFT-R

	Experiments
	Small-scale experiment
	Large-scale benchmark

	Conclusion
	Acknowledgements
	References

