
T2FA: A Heuristic Algorithm for
Deadline-constrained Workflow Scheduling in

Cloud with Multicore Resource

Zaixing Sun, Chonglin Gu∗, and Hejiao Huang
Harbin Institute of Technology (Shenzhen), China

Email: guchonglin@hit.edu.cn

Honglin Zhang
Shandong University, China

Abstract—Workflow scheduling is one of the most challenging
problems in cloud computing. This paper proposes a heuristic
algorithm task type first algorithm (T2FA) for solving deadline-
constrained workflow scheduling in cloud with multicore resource
(DWS CMR). The objectives to be minimized are the maximal
completion time (i.e., makespan) and the total costs. Firstly,
resource model and workflow application model are introduced.
Resource model has the configurations of multicore, processing
capacity, bandwidth and leasing price, and workflow application
model is described by directed acyclic graph (DAG). Based
on above models, the mathematical model of DWS CMR is
established, which allows multiple tasks to run concurrently on
multicore resources. Secondly, to exploit the characteristics of the
problem, the structures of DAG are decomposed and formulated.
Merging tasks conforming to the first structure into task blocks
can simplify DAG. Four special types of tasks are extracted
from the second and third structures, and are preferentially
scheduled in task scheduling stage. Then, a new interrelated
calculation method of estimated start time and actual start time
of tasks is proposed, which can complete the task-to-resource
mapping. Finally, T2FA is devised, which incorporates two
important phases, including pre-processing and task scheduling.
Experimental results show that T2FA can achieve significantly
better schedules in most test cases compared to several existing
algorithms.

Keywords—Cloud Computing, Multicore Resource, Workflow
Scheduling, Deadline Constraint, Directed Acyclic Graph

I. INTRODUCTION

CLOUD computing is emerging as a primary computing

paradiam that is researched, developed, and deployed

by enterprises, governments, and academic institutes in recent

years [1]. By supporting a pay-as-you-go service model, cloud

computing removes initial capital, maintenance, and software

licensing cost [2]. In addition, it has greatly changed the way

information technology infrastructure is provided to satisfy

various business needs by enabling on-demand infrastructure

provisioning.

For the execution scenarios of tasks in cloud, there are two

categories, Non-multiprogrammed, where a single computing

resource processes a single task, and Multiprogrammed, where

a single computing resource processes multiple tasks at the

same time. Among them, the Non-multiprogrammed method

has been fully studied [3]. If a task cannot fully use the

computing resources provided by a service, having it exclu-

sively occupying the entire service will lead to resource over-

provisioning. With the development of multicore technology,

the computing resources provided by cloud service providers

are mainly in the form of virtual machine (VM). In the

research of [4]–[6], each task is allowed to occupy one

CPU core instead of the whole service. In real workflow,

the demands of tasks may not only include processors, but

also many other types of resources, such as memory and I/O

bandwidth. Therefore, the research of multiprogrammed task

execution model becomes more and more important.

Workflow scheduling problem is a typical NP-Complete

problem, which has been a hot research topic in the field of

distributed computing for many years [7]–[9]. Workflow is

usually described by directed acyclic graph (DAG), in which

each node represents a task, and the directed relationship

between two node pairs represents the processing constraint

of the tasks. The essence of workflow scheduling is to es-

tablish a set of effective mapping relationships from task

to VM in cloud, and to minimize the maximum completion

time (Makespan) and cost under the constraints of Quality

of Service (QoS), so as to achieve efficient utilization and

balanced allocation of system resources. In recent years, dead-

line constraint workflow scheduling is becoming increasingly

important in cloud computing. Missing the deadline may result

in severe losses especially for large-scale scientific computing

and the Internet services with widespread influence.

Workflows have been proved to be an effective and popular

method to model various scientific computing problems in

parallel and distributed systems, such as larges-cale scien-

tific problems in the fields of astronomy, bioinformatics, and

physics [10]. Scientific workflows may vary in size from a

few tasks with limited resource needs to millions of tasks

requiring tens of thousands of processing hours, terabytes of

storage and high bandwidth network resources. Such complex

workflows have ever-increasing data and computing demands,

so they need a high-performance computing environment to

be executed in a reasonable time [11]. The appearance of the

infrastructure as a service (IaaS) clouds offers us a new utility-

based platform to execute large scale workflows.

In cloud computing environment, the distributed scheduling

system, which is the basic technology to maintain the efficient

operation of its data center, mainly includes two key modules:

resource management and task scheduling. The quality of

345

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00048

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

78
-1

-6
65

4-
00

60
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D5

38
61

.2
02

1.
00

04
8

scheduling technology directly affects the user satisfaction

and the efficiency of cloud computing system. Optimizing

scheduling technology can effectively reduce the completion

time of tasks, reduce energy consumption and save operating

costs, and can effectively improve the utilization of computing

resources. Although there are many existing workflow schedul-

ing algorithms in the traditional distributed or heterogeneous

computing environment, because the cloud is different from

the traditional heterogeneous environment, its service-based

resource management method and on-demand pricing strategy

make the existing workflow scheduling algorithms have limi-

tations in the cloud environment. Therefore, it is necessary to

develop and study workflow scheduling technology in cloud

environment, which has theoretical significance and practical

value.

This paper studies deadline-constrained workflow schedul-

ing in cloud with multicore resource (DWS CMR) of min-

imizing the maximal completion time (i.e., makespan) and

the total costs (TC). In DWS CMR, tasks are executed on

a certain number of heterogeneous multicore VMs. The VMs

are acquired and released dynamically. The bandwidth of VM

needs to be considered when transferring data between tasks.

The challenges of this work mainly consider three aspects:

• The strong inter-dependencies between workflow tasks.

When adjacent tasks are executed on different VMs,

the data transmission time is different due to different

bandwidths, which affects the starting execution time of

subsequent tasks.

• The task should not only select the appropriate VM, but

also specify the core of the selected VM. In addition, the

execution time of tasks on VMs with different configu-

rations is different. The higher the configuration of VM,

the shorter the execution time of task, and the higher the

price per unit time of VM lease.

• The deadline constraint is satisfied as much as possible.

Based on the above challenges, this paper proposes a heuristic

algorithm called task type first algorithm (T2FA) to solve

DWS CMR.

The main contributions of this paper are as follows.

• A new workflow scheduling model is presented, which

allows multiple tasks to run concurrently on multicore

resources.

• The structures of DAG are decomposed and formulated.

Different structures act on different stages of the algo-

rithm.

• An integrated method is designed to calculate the esti-

mated start time and actual start time of a task. When the

actual start time is determined, the mapping from task to

resource is completed.

• A heuristic algorithm T2FA is proposed to solve

DWS CMR. Extensive simulation experiments demon-

strate the superiorities and competitiveness of T2FA.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III presents the cloud work-

flow scheduling model, including resource model, application

model, and workflow scheduling. Section IV provides details

of the designs for T2FA to address DWS CMR. Section V

presents the experimentation and evaluation. Finally, Section

VI concludes the paper.

II. RELATED WORK

A substantial number of research efforts have been devel-

oped towards solving the cost and makespan issues of work-

flow scheduling. According to different execution scenarios,

the workflow scheduling model has different characteristics.

The execution scenarios (resource models) are evolving from

homogeneous single-core processors with limited resources to

multicore processors with heterogeneous resources.

In homogeneous resource environment, all computing re-

sources have the same configuration of CPU, memory, etc.

Byun et al. [12] proposed a Partitioned Balanced Time

Scheduling (PBTS) algorithm, which estimates the minimum

number of computing hosts required to execute a workflow

under user deadline, minimizing the gross cost during the

entire application lifetime. Wu et al. [13] proposed a two-stage

method VM instances and VM instance hour minimization for

deadline constrained DAG applications deployed on computer

clouds. Firstly, the minimal slack time and minimal distance

algorithm was designed to find the minimum number of VM

instances needed to guarantee the deadline and minimize the

makespan. On this basis, VM instance hour minimization

algorithm was used to reduce the number of instance hours,

thus reducing the cost.

In heterogeneous scenes, Abrishami et al. [14] proposed

two algorithms called IaaS Cloud Partial Critical Paths (IC-

PCP) and IC-PCP with Deadline Distribution (IC-PCPD2) for

minimizing the cost of workflow execution under deadline

constraints. The former distributes the overall deadline to

PCPs, while the latter further distributes the deadline to each

task in proportion to its minimum execution time. Then, the

cheapest resource which can meet the latest finishing time

of the task is selected for partitions and tasks, respectively.

The simulation results showed that both algorithms have a

promising performance, with IC-PCP performing better than

IC-PCPD2 in most cases. Rodriguez et al. [11] developed par-

ticle swarm optimization (PSO) to minimize overall workflow

execution cost while meeting the deadline constraint in clouds.

However, they mainly designed the resource provisioning

and scheduling strategy, and there was no improvement on

the PSO. Sahni et al. [15] considered the VM performance

variability and instance acquisition delay , and proposed Just-

in-Time (JIT-C) algorithm to minimize cost of workflow

execution under deadline constraints. In JIT-C algorithm, tasks

with serial characteristics are merged, which reduces the cost

of data transmission and the complexity of problem solving

to a certain extent.

With the development of multicore processor technology,

Deldari et al. [16] established a heterogeneous computing

resource model, in which each multicore processor consists

of several homogeneous cores, and proposed a cluster com-

bining algorithm (CCA), to minimize the execution cost while

346

meeting the deadline constraints submitted by users. Zhu et al.

[17] considered both the multiprogrammed use of computing

resources on heterogeneous IaaS platforms and the multi-

resource demands of tasks, and proposed a new list-scheduling

framework. To make the best use of cloud resources, this

framework can efficiently pack tasks onto VMs and support

the dynamic expansion of VMs in the scheduling process.

Based on this framework, a deadline-constrained workflow

scheduling algorithm (DyDL) was proposed to minimize the

cost of workflow execution.

III. CLOUD WORKFLOW SCHEDULING MODEL

In this section, the resource model and workflow applica-

tion model are described, and then the workflow scheduling

mathematical model is established.

A. Resource Model

Elastic compute service platforms deliver computing re-

sources to customers via virtual machine instances. The VMs

are heterogeneous with various configurations (e.g. CPU num-

bers, processing capacity and network bandwidth) and can be

defined as VM = (P,N,U,B,M).

• P = {Pi|i = 1, 2, · · · ,m} is the set of VMs.

• N = {Ni|i ∈ P} is the set of CPU cores, where Ni is

the number of CPU cores in VM Pi. When a task is

executed on a multicore CPU, it can occupies one CPU

core at most.

• U = {Ui|i ∈ P} is the set of processing capacity of VM,

where Ui is the processing capacity of VM Pi. The higher

the processing capacity of VM, the shorter the execution

time of a task.

• B = {Bij |i, j ∈ P} is the set of the data transfer rate

between VMs. Bij = min {bi, bj} is the data transfer

rate between VM Pi and Pj , where Bij → +∞ when

i = j and bi is bandwidth for VM Pi.

• M = {Mi|i ∈ P} is the set of the leasing price, where

Mi is the per-unit price of VM Pi. The pricing model is

based on a pay-as-you-go billing scheme and the users

are charged for the number of billing intervals of the VMs

they lease, even if these VMs have not been completely

used in the last billing interval. The billing interval is

specified by the cloud provider. For example, Amazon

EC2 platform sets 1 hour as a minimum unit of lease time

while Microsoft Azure sets 1 minute. Let CU denote the

billing interval of the cloud service platform.

In reality, cloud providers charge storage services for storing

data files according to the allocated capacity, but these costs

are not accounted for in the resource model since they are

independent of the scheduling algorithms. It assumes that the

VMs have enough memory to perform workflow tasks.

B. Workflow Application Model

The user submits a workflow to the cloud service platform.

Each task of the workflow has a fixed resource require-

ment. Workflow is represented by direct acyclic graph (DAG)

G = (T,W,E,D,C), which can describe different scientific

and engineering problems. These five elements in DAG are

introduced separately below.

Fig. 1. A sample workflow

• T = {Ti|i = 1, 2, · · · , n} is the set of all tasks, where Ti

represents a task in the DAG and n represents the total

number of tasks.

• W = {Wi|i ∈ T} is the set of weights on the task

and represents the reference execution time of tasks , in

seconds. ETik = Wi

Uk
is the execution time of a task Ti

on VM Pk.

• E = {Eij = (Ti, Tj)|Ti, Tj ∈ T ; i < j} is the set of de-

pendencies between tasks. Dependency (Ti, Tj) indicates

a precedence constraint between tasks Ti and Tj , where

Ti is the direct predecessor task of Tj and Tj is the direct

successor task of Ti.

• Dij is the amount of data transferred from task Ti to task

Tj , in bytes.

• C =
{
Ckl

ij

∣∣i, j ∈ T ; k, l ∈ P ; i < j
}

is the set of data

transfer time between tasks with dependency. Ckl
ij =

Dij

Bkl

represents the communication time between task Ti and

task Tj , where task Ti is executed on VM Pk and task

Tj is executed on VM Pl. When k = l, the transmission

time on the same VM is 0.

A sample workflow is shown in Fig. 1. Each node represents

a task and the value under the node is the weight of the task.

Each arc represents the processing constraints between tasks,

and the value on it represents data transmitted.

In addition, each workflow has a deadline DL, which is

defined as the time limit specified by the user for the execution

of the workflow.

C. Workflow Scheduling

Workflow scheduling is to schedule the tasks of the work-

flow to the VMs on the cloud platform. In essence, workflow

scheduling establishes a mapping between tasks and VMs.

Fig. 2 shows a sample schedule generated for the workflow

shown in Fig. 1. Each task is mapped onto one of the two

available VMs. For convenience of observation, the two VMs

selected have the same configuration, where N1 = N2 = 2,

U1 = U2 = 1, B12 = B21 = 1.

This work focuses on finding a schedule to execute a

workflow on an IaaS cloud such that total execution cost

347

Fig. 2. Workflow scheduling

and makespan are minimized while meeting the user defined

deadline constraint. A schedule is denoted as Π = (γ, δ, α, β)
in terms of a task to VM and core mapping, and the actual

start and finish time of tasks.

• γ = {γi|i ∈ T} is the mapping of tasks to VMs, where

γi indicates that task Ti is assigned to be executed on

VM Pγi
.

• δ = {δi|i ∈ T} is the set of cores corresponding to tasks,

where δi indicates that task Ti is assigned to be executed

on the δith core of VM Pγi .

• α = {αi|i ∈ T} and β = {βi|i ∈ T} are the set of actual

start time and completion time of task respectively.

In addition, the lease start time of a VM is the earliest start

time on the VM, and the lease end time is the latest finish

time on the VM. The lease time of VM Pk is shown in Eq. 1.

τk = max {βj} −min {αi} , i, j ∈ T, γi = γj = k. (1)

The objective of scheduling is f(Π) = (Cmax, TC). Based

on the previous definitions, DWS CMR can be formally

defined as follows:

Minimize Cmax = max {βi|i ∈ T} , (2)

Minimize TC =
m∑

k=1

Mk ×
⌈ τk
CU

⌉
, (3)

subject to Cmax ≤ DL, (4)

βi ≤ αj , (Ti, Tj) ∈ E. (5)

IV. THE PROPOSED WORKFLOW SCHEDULING

ALGORITHM

This section will detail the proposed task type first algo-

rithm (T2FA) for workflow scheduling after explaining DAG

structure decomposition, task topological level, task available

start time and actual start time.

A. DAG structure decomposition

By analyzing the composition characteristics of the upper

and lower nodes in the DAG, it can be summarized into the

four structures of Fig. 3. The details are as follows.

• In Fig. 3(a), the structure is single output single input

(SOSI), which is a typical serial structure and satisfies

the following constraints.

|Suc(Ti)| =
∑

Tj∈Suc(Ti)

|Pre(Tj)| = 1, (6)

(a) Single output single input. (b) Multiple output single input.

(c) Single output multiple input. (d) Multiple output multiple input.

Fig. 3. Four structures in DAG

where Suc(Ti) = {Tj |(Ti, Tj) ∈ E} represents the set

of all direct successors of task Ti and Pre(Tj) =
{Ti|(Ti, Tj) ∈ E} represents the set of all direct prede-

cessors of task Tj .

The best strategy is to assign the tasks to same VM, so

they can be merged as a task block. The execution time

of the task block is the sum of its internal task execution

time, and the data transmission within the structure is

0. After task merging, DAG can be simplified, and the

solution complexity and solution space can be reduced to

the same extent.

• In Fig. 3(b), the structure is multiple output single input

(MOSI), in which the parent node has multiple child

nodes, and the child nodes have a unique parent node.

The structure satisfies the following constraints.

|Suc(Ti)| =
∑

Tj∈Suc(Ti)

|Pre(Tj)| > 1. (7)

Child nodes are parallel structures, and their start time

depends on the unique parent node. To facilitate schedul-

ing, the parent node Ti is defined as the first kind of

node Type1, child node Tj is defined as the second type

of node Type2.

Type1 = {Ti|Ti satisfies Eq. 7} , (8)

Type2 = {Tj |Tj satisfies Eq. 7} . (9)

• In Fig. 3(c), the structure is single output multiple input

(SOMI), in which the parent nodes have unique child

nodes, and the child node has multiple parent nodes. The

structure satisfies the following constraints.

|Pre(Tj)| =
∑

Ti∈Pre(Tj)

|Suc(Ti)| > 1. (10)

Parent nodes are parallel structures, and their completion

time jointly determine the start time of the child node.

To facilitate scheduling, the parent node Ti is defined as

the third kind of node Type3, child node Tj is defined

as the fourth type of node Type4.

Type3 = {Ti|Ti satisfies Eq. 10} , (11)

348

Type4 = {Tj |Tj satisfies Eq. 10} . (12)

• In Fig. 3(d), the structure is a general case a general case

of multiple output and multiple input (MOMI) and is not

analyzed separately.

B. Task Topological Level

Given a DAG-based workflow, its task ti’s topological level

Lev(Ti) is defined as [13]:

Lev(Ti) =

⎧⎨
⎩
0, if Pre(Ti) = φ

max
Tj∈Pre(Ti)

{Lev(Tj)}+ 1, otherwise.

(13)

Thus, the set LTjk ∈ LT of task in each level can be obtained,

as shown in Eq. 14, where LTjk represents the kth task of the

jth level, j = 0, 1, · · · ,max {Lev}, k = 1, · · · , |LTj |, and

|LTj | is the number of tasks in jth level.

LTj = {Ti|j = Lev(Ti), i = 1, 2, · · · , n} . (14)

In particular, tasks at a lower topological level have higher

priorities than tasks at a higher level [13].

C. Available Start Time and Actual Start Time

Available start time (AT) refers to the earliest start time

when task is assumed to be executed on a specified VM core,

which is determined by the actual completion time of the

predecessor task and the completion time of the VM core.

For example, ATikr represents the available start time of task

Ti on the rth core of VM Pk. It is obtained as given in Eq. 15:

ATikr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max {0, PCkr} , if Pre(Ti) = φ

max

⎧⎨
⎩

max
Tj∈Pre(Ti)

{
βj + Ckl

ij

}
,

PCkr

⎫⎬
⎭ , otherwise.

(15)

Where l = γj is the assigned VM of task Tj , and PCkr is the

completion time on the rth core of VM Pk.

The actual start time of task Ti (i.e. αi) is determined by

AT , MFT and setP . MFT is the current maximum finish

time, and setP is the set of VMs that have assigned tasks.

In the set setP , if the smallest AT is less than MFT , αi,

the corresponding AT is taken as the αi; otherwise, select

the smallest in P as the αi. While obtaining the actual start

time αi, the VM γi, and core δi that execute the task can be

obtained. The actual completion time of task Ti (i.e. βi) is

equal to the sum of actual start time and execution time. See

Algorithm 2 for details.

For VM selection, VM is first selected from the VMs

with assigned tasks, which can make the scheduling more

compact; when the current completion time constraint is not

met, selecting from all available VMs can make the task start

processing as early as possible.

Algorithm 1: T2FA

Input: Resource (P,N,U,B,M), workflow

(T,E,W,C,D), Deadline
Output: Π = (γ, δ, α, β), f(Π) = (Cmax, TC)

1 Simplify DAG by Eq. 6;

2 Compute LT using Eqs. 13 and 14;

3 v′ = max {|LT0| , |Suc(LT0i)| |i = 1, 2, · · · , |LT0|} ;

4 if {Ni|Ni ≥ v′, i ∈ P} �= φ then
5 v = argmin {Ni|Ni ≥ v′, i ∈ P};

6 else
7 v = argmax {Ni|i ∈ P} ;

8 end
9 setP = {v}, MFT = max {Wi|Ti ∈ LT0} /Uv ;

10 for l ← 0 to max{Lev} do
11 Random generation of a ranking from 1 to 4,

denoted by RCS ;

12 foreach c ∈ RCS do
13 dt = LTl ∩ Typec ;

14 π = Typec − dt;
15 Typec = Typec − dt;
16 LTl = LTl − dt;
17 Sort the tasks in π in descending order of

weight value;

18 call TaskSchedule(π);
19 end
20 Sort the unscheduled tasks in LTl in descending

order of weight value;

21 call TaskSchedule(LTl);
22 end
23 Compute objectives.

D. Task Type First Algorithm (T2FA)

The detail of the proposed T2FA is listed as Algorithm 1.

T2FA is designed according to the characteristics of resource

model and workflow application model. In the multicore

resource model, the virtual machines are heterogeneous, while

the different cores in a virtual machine are homogeneous. In

the DAG description of the workflow application model, there

are processing constraints between different layers, and tasks

in the same layer can be processed in parallel.

Pre-processing. Through the structural decomposition of

DAG in Section IV-A, DAG can be simplified by Eq. 6 (line

1 in Algorithm 1). Then divide the task topological level and

count the tasks of each level (line 2 in Algorithm 1). Since

it is a multicore VM, the choice of the first VM is crucial.

The algorithm considers three factors: the number of tasks

in 0th level (i.e. |LT0|), the maximum number of subsequent

tasks and the number of VM cores, which can reduce data

transmission to a certain extent (lines 3-8 in Algorithm 1). On

this basis, set the set of candidate VMs setP and the expected

maximum finish time value MFT (line 9 in Algorithm 1).

Task scheduling. In the task scheduling stage, it is divided

into three levels according to the topology level and task type.

Level 1 is the topological level from low to high (line 10 in

349

Algorithm 2: TaskSchedule(π)

1 foreach i ∈ π do
2 Compute ATikr using Eq. 15, ∀ k ∈ P , r ∈ N ;

3 k, r = argmin {ATikr|k ∈ setP, r ∈ N} ;

4 if ATikr + ETik > MFT then
5 k, r = argmin {ATikr|k ∈ P, r ∈ N} ;

6 end
7 γi = k, δi = r, αi = ATikr;

8 βi = αi + ETik;

9 if βi > MFT then MFT = βi;

10 if k �∈ setP then setP = setP ∪ {k};

11 end
12 return

Algorithm 1), level 2 is the four special task types (lines 11-19

in Algorithm 1), and level 3 is the general type of tasks (lines

20-21 in Algorithm 1). Four special task types are scheduled

in random order. Within the same type, tasks are arranged in

descending order of task weight, and then scheduled according

to Algorithm 2. Algorithm 2 is the process of getting the actual

start time of tasks and allocating VMs, as introduced above

in Section IV-C. The expected maximum finish time MFT in

the algorithm is used as a reference value, and its initial value

is set in lines 3-9 of Algorithm 1. When scheduling tasks,

the VM whose existing tasks are executed is preferentially

selected. When the available finish time of the task is less than

MFT , deploy the task to the VM with the earliest available

finish time; otherwise, select the VM with the earliest available

finish time from all VMs and update MFT (lines 3-6 and line

9 in Algorithm 2). The purpose of setting MFT is to make

scheduling more compact.

The main ideas of T2FA are as follows. Firstly, through

DAG structure decomposition, DAG is simplified and tasks

are divided into different types of sets (lines 1-2 in Algorithm

1). Then, the tasks are scheduled in turn according to the

topology level (line 10 in Algorithm 1). At each level, tasks in

Type1-4 are scheduled preferentially (lines 11-12 in Algorithm

1). Among the tasks of the same type, the task with the

longest execution time is preferentially scheduled (lines 13-

18 in Algorithm 1).

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Environment

In the experiment, we use 5 representative VM types

from low configuration to high configuration. Among them,

the CPU core number and unit price are configured by

Amazon EC2’s C4-type VMs, as shown in Table 1. Corre-

spondingly, the following two parameters are set according

to different VM configurations. According to the research

in [10], [18], the processing capacity of VM is expressed

by CPU clock frequency, in GHz. The processing capacity

U = {U1, U2, U3, U4, U5} = {1.8, 2.2, 2.7, 3.15, 3.5} and the

bandwidth b = {b1, b2, b3, b4, b5} = {1, 1.5, 2, 3, 3}. The unit

of bandwidth is Gbps. The number of virtual machines used

in the experiment is m = {5, 10}. When m = 5, each type of

VM uses one; when m = 10, each type of VM uses two. The

billing interval is 1 hour, that is, CU = 3600s.

TABLE I
CONFIGURATIONS AND PRICES OF VIRTUAL MACHINES1

VM Type vCPU Cost ($/h)

1 c4.large 2 0.1
2 c4.xlarge 4 0.199
3 c4.2xlarge 8 0.398
4 c4.4xlarge 16 0.796
5 c4.8xlarge 36 1.591

Five real-world workflow types from different scientific

areas are used in the experiments: CyberShake, Epigenomics,

Inspiral, Montage and Sipht [14], [19], [20]. Each of them

has different structures and characteristics and is widely used

to evaluate the performance of the workflow scheduling ap-

proaches. Fig. 4 shows the sample DAG structures of these

workflow [21]. Their specific characteristics are as follows.

More details about these workflows can be found in [19].

(a) Montage (b) Epigenomics (c) Inspiral

(d) CyberShake (e) Sipht

Fig. 4. Structures of the five real-world workflow

• CyberShake: It is an earthquake science application used

to characterize earthquake hazards through combining

large datasets.After decomposition, it mainly includes

three structures: SOSI, MOSI and MOMI in Fig. 3.

• Epigenomics: It is a highly pipelined biology application

which maps the epigenetic state of human cells.After

decomposition, it mainly includes three structures: SOSI,

MOSI and SOMI in Fig. 3.

• Inspiral: It is used in the physics field to detect gravi-

tational waves. After decomposition, it mainly includes

three structures: SOSI, MOSI and SOMI in Fig. 3.

• Montage: It is used in astronomy with the aim of con-

structing the desired mosaic of the sky on the basis of

input images. After decomposition, it mainly includes two

structures: SOSI and SOMI in Fig. 3.

1https://aws.amazon.com/ec2/pricing/on-demand/

350

• Sipht: It is used for automating the search of sRNA

encoding-genes for bacterial replicons from bioinformat-

ics. After decomposition, it mainly includes two struc-

tures: SOMI and MOMI in Fig. 3.

The five real-world workflows can be decomposed into at

least two structures in Fig. 3, and all of them have SOMI struc-

ture (Fig. 3(c)). All these workflow instances are generated

in form of Directed Acyclic Graph in XML (DAX) format

by Pegasus WorkflowGenerator [15], [19], [22], [23], and

are publicly available on Pegasus website2. These DAX files

contain information such as list of tasks, dependencies between

tasks, their computation time and size of the input/output files

generated by the tasks. The number of tasks varies from 24-

1000. Using ’Workflow type Number of tasks’ to distinguish

different problems, such as CyberShake 30 represents Cyber-

Shake of 30 tasks.

B. Deadline Setup

Deadline of workflow is an important constraint of

DWS CMR, if the deadline is generously relaxed, there is

enough slack time to accommodate for the VM acquisition

delay and the performance variation. Therefore, a comprehen-

sive evaluation requires performance analysis on all possible

deadlines. To this end, use the following rules to set deadline.

First, estimate maximum execution time (MET) and the

maximum transmission time (MTT):

METi = max {ETik|Pk ∈ P} , (16)

MTTij = max

{
Dij

bk

∣∣∣∣Pk ∈ P

}
. (17)

Then estimate start time (EST) and finish time (EFT):

ESTi =

⎧⎨
⎩
0, if Pre(Ti) = φ

max
Tj∈Pre(Ti)

{EFTj +MTTji} , otherwise.

(18)

EFTj = ESTj +METj . (19)

The deadline is set to:

DL = μ×max {EFTi|Ti ∈ T} , (20)

where μ ∈ {0.8, 1.1, 1.5, 1.8} is deadline factor.

C. Baseline Algorithms

To illustrate the effectiveness of the proposed algorithm,

three baseline algorithms are implemented for comparison,

including two heuristic algorithms IC-PCP [14] and JIT-C

[15], and a meta-heuristic algorithm PSO [11]. These three

algorithms have been introduced in Section II and are classical

algorithms in solving the problem of a cost-minimization,

deadline-constrained workflow scheduling problem. Although

originally proposed for non-multicore resource problem, they

can be applied to DWS CMR with some modifications. The

parameters of PSO are set according to the optimal parameters

given in [11], which are c1 = c2 = 2.0, ω = 0.5, and the

2https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

number of particles and iteration times are set to 100. All

algorithms are coded in Python and are executed on Intel Core

i5-9500 3.0GHz processor with 32GB RAM.

D. Performance Results

To evaluate the impacts of different workflow types and

resource quantity, for each workflow under different deadline

factors, comparisons of the algorithms are based on the follow-

ing three metrics: makespan Cmax, total cost TC and running

time of the algorithms. Cmax and TC are two objectives of

DWS CMR, and are normalized by the following formula:

fnorm =
f − fmin

fmax − fmin
, (21)

where fmin and fmax are the minimum and maximum value

achieved among all the four algorithms compared, respectively.

Running time is the CPU execution time for the algorithm to

obtain the scheduling solution for a given problem. Although

DWS CMR is static scheduling problem, in order to provide

a practical solution, running time of is the key constraint. This

metric basically gives the average cost of each algorithm [8].

When the solution obtained by the algorithm cannot satisfy

the deadline constraint (i.e. infeasible solution), the values of

the three metrics are null.

1) Comparison of 5 VMs. Fig. 5 and Fig. 6 show the

comparison of makespan and cost under different deadline

factors when the number of VMs is 5. For makespan, in

terms of CyberShake, Epigenomics, and Inspiral workflows,

PSO can get the smallest makespan in terms of minimum

scale, followed by T2FA. With the expansion of scale, T2FA

has become more prominent and gradually replaced PSO.

Among Montage and Sipht workflows, T2FA can always get

the smallest makespan except for Montage workflow with

1000 tasks.

For cost, T2FA can always get a relatively small cost, except

for Sipht workflow. For Sipht workflow, T2FA has medium

performance on small and medium-sized problems and better

performance on 1000 tasks workflow.

For the workflow with 1000 tasks, when deadline factor μ =
0.8, only JIT-C and T2FA can get feasible solutions on Sipht

workflow, and T2FA is better than JIT-C. With the increase

of deadline factor, other algorithms can get feasible solutions

for each type of workflow problem, which further shows the

effectiveness of deadline setting method.

In addition, IC-PCP algorithm can’t get the solution that

satisfies the deadline constraint in all workflow types when

deadline factor μ = 0.8, which is related to the setting method

of deadline and the characteristics of the algorithm, not the

weak performance of the algorithm. Moreover, IC-PCP can

also obtain smaller cost solutions for medium scale problems.

It also shows that IC-PCP algorithm obtains the least cost at

the expense of time.

For PSO, in small and medium-sized CyberShake, Epige-

nomics, Inspiral and Sipht workflow problems, it can always

get relatively small makespan, but it always gets the highest

351

Fig. 5. The normalized makespan of scheduling workflows with IC-PCP,
PSO, JIT-C and T2FA with m = 5.

Fig. 6. The normalized total cost of scheduling workflows with IC-PCP,
PSO, JIT-C and T2FA with m = 5.

cost in almost all problems, which indicates that PSO gets the

least time at the expense of cost.

For JIT-C algorithm, makespan and cost are always at the

second or third level.

In general, T2FA can take into account both makespan and

cost, and can obtain a better solution.

2) Comparison of 10 VMs. Fig. 7 and Fig. 8 show the

comparison of makespan and cost under different deadline

factors when the number of VMs is 10. Except for the large-

scale problem of 1000 task, the results of other problems

are similar to the previous experiments. Because there are

fewer algorithms to obtain infeasible solutions for large-scale

problems.

It is worth mentioning that the number of workflows in

which the JIT-C algorithm obtains infeasible solutions has

increased, such as CyberShake for 1000 tasks, CyberShake for

30 tasks at μ = 0.8, Epigenomics for 24 tasks, and Inspiral for

30 tasks. The main reason is that JIT-C algorithm adopts the

cheapest rule in the VM allocation stage, which is also a time-

consuming rule to some extent. Especially in the selection of

the first VM, it is often the VM with the lowest configuration,

which will lead to a lot of data transmission costs.

3) Running Time of the Algorithms. Table II shows the

average running time of the algorithm under different work-

flow types. Avg is the average running time of the algorithm

based on all workflow types. The time of T2FA is always

the least and the longest is no more than 1 second. With the

increase of the scale of the problem, the running time does

not change significantly. Since PSO is a swarm intelligence

algorithm, through iterative optimization, it is conceivable that

the running time of the algorithm is longer than that of the

heuristic algorithm. Although IC-PCP and JIT-C are heuristic

algorithms, there are still some iterations in the algorithm

process. As the problem scale increases, the running time

becomes significantly longer.

TABLE II
AVERAGE RUNNING TIME OF SCHEDULING ALGORITHMS (IN SECOND).

m = 5 m = 10

IC-PCP PSO JIT-C T2FA IC-PCP PSO JIT-C T2FA

CyberShake 30 2.849 99.388 0.372 0.014 3.282 127.606 0.409 0.025
CyberShake 50 3.577 171.059 1.014 0.025 4.372 219.290 1.037 0.039
CyberShake 100 6.434 386.915 4.293 0.052 7.383 419.825 4.685 0.060
CyberShake 1000 42.124 null 396.285 0.596 50.950 null null 0.700
Epigenomics 24 2.265 64.712 0.038 0.009 2.704 85.990 0.037 0.008
Epigenomics 46 2.739 126.570 0.115 0.018 3.248 168.306 0.113 0.018
Epigenomics 100 4.499 278.127 0.341 0.034 6.023 344.732 0.342 0.051
Epigenomics 997 null null 26.123 0.366 21.585 null 26.056 0.400
Inspiral 30 2.761 81.205 0.113 0.011 3.242 114.870 0.113 0.014
Inspiral 50 3.470 137.190 0.272 0.021 3.814 185.900 0.261 0.025
Inspiral 100 4.148 276.147 0.969 0.036 4.497 348.541 0.958 0.043
Inspiral 1000 null null 88.512 0.426 26.374 null 85.445 0.434
Montage 25 3.014 87.299 0.208 0.012 3.435 99.022 0.211 0.016
Montage 50 4.967 191.874 0.951 0.030 5.236 214.839 1.151 0.037
Montage 100 7.913 406.798 4.139 0.064 8.356 507.725 4.464 0.147
Montage 1000 null 4695.863 488.354 0.714 294.147 4686.436 476.947 0.825
Sipht 30 2.755 89.851 0.287 0.012 2.885 109.626 0.282 0.014
Sipht 60 2.796 173.485 1.040 0.023 3.172 218.842 1.083 0.035
Sipht 100 4.058 270.520 2.776 0.038 4.348 335.639 3.055 0.060
Sipht 1000 20.819 2931.188 275.781 0.512 22.586 3412.730 282.565 0.638
Avg 7.129 615.776 64.599 0.151 24.082 682.348 46.801 0.179

352

Fig. 7. The normalized makespan of scheduling workflows with IC-PCP,
PSO, JIT-C and T2FA with m = 10.

Fig. 8. The normalized total cost of scheduling workflows with IC-PCP,
PSO, JIT-C and T2FA with m = 10.

VI. CONCLUSION

This paper presented a heuristic algorithm task type

first algorithm (T2FA) for solving deadline-constrained

workflow scheduling in cloud with multicore resource

(DWS CMR), which minimizes the maximal completion time

(i.e., makespan) and the total costs (TC). Firstly, the relevant

models of DWS CMR were introduced. Secondly, the struc-

ture of directed acyclic graph (DAG) description of workflow

was decomposed, and three structures were emphatically an-

alyzed. The first structure was used to simplify DAG, and

the other two structures contained four special types of tasks,

which were used for task scheduling. Then, the definitions

of available start time and actual start time were introduced,

and the resource allocation method was determined. A novel

and effective T2FA was further proposed to solve DWS CMR.

Finally, the simulation results and comparisons demonstrated

that T2FA outperforms the baseline algorithms includings two

heuristic algorithms IC-PCP and JIT-C, and a meta-heuristic

algorithm PSO. In the future, our work is to investigate the

applications of the presented method to the multiobjective

workflow scheduling problems with energy consumption.

VII. ACKNOWLEDGEMENTS

This work is financially supported by National Key R&D

Program of China under Grant No.2017YFB0803002, Na-

tional Natural Science Foundation of China under Grant

No.61732022, and Guangdong Basic and Applied Basic Re-

search Foundation under Grant No.2019A1515110214.

REFERENCES

[1] H. Yuan, J. Bi, and M. C. Zhou, “Energy-Efficient and QoS-Optimized
Adaptive Task Scheduling and Management in Clouds,” IEEE Transac-
tions on Automation Science and Engineering, pp. 1–12, 2020.

[2] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A Hybrid Bio-
Inspired Algorithm for Scheduling and Resource Management in Cloud
Environment,” IEEE Transactions on Services Computing, vol. 13, no. 1,
pp. 3–15, 2020.

[3] M. Wieczorek, A. Hoheisel, and R. Prodan, “Towards a general model of
the multi-criteria workflow scheduling on the grid,” Future Generation
Computer Systems, vol. 25, no. 3, pp. 237–256, 2009.

[4] S. Smanchat and K. Viriyapant, “Taxonomies of workflow scheduling
problem and techniques in the cloud,” Future Generation Computer
Systems, vol. 52, pp. 1–12, 2015.

[5] Y. C. Lee, H. Han, A. Y. Zomaya, and M. Yousif, “Resource-efficient
workflow scheduling in clouds,” Knowledge-Based Systems, vol. 80, pp.
153–162, 2015.

[6] R. Pathan, P. Voudouris, and P. Stenström, “Scheduling Parallel Real-
Time Recurrent Tasks on Multicore Platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 4, pp. 915–928, 2018.

[7] D. Fernandez-Baca, “Allocating modules to processors in a distributed
system,” IEEE Transactions on Software Engineering, vol. 15, no. 11,
pp. 1427–1436, 1989.

[8] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[9] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, and
Y. Ma, “Reliability and temperature constrained task scheduling for
makespan minimization on heterogeneous multi-core platforms,” Journal
of Systems and Software, vol. 133, pp. 1–16, 2017.

[10] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and Energy
Aware Scheduling Algorithm for Scientific Workflows with Deadline
Constraint in Clouds,” IEEE Transactions on Services Computing,
vol. 11, no. 4, pp. 713–726, 2018.

[11] M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioning
and Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235, 2014.

353

[12] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 1011–1026, 2011.

[13] H. Wu, X. Hua, Z. Li, and S. Ren, “Resource and Instance Hour
Minimization for Deadline Constrained DAG Applications Using Com-
puter Clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 3, pp. 885–899, 2016.

[14] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for Infrastructure as a Service Clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[15] J. Sahni and P. Vidyarthi, “A Cost-Effective Deadline-Constrained
Dynamic Scheduling Algorithm for Scientific Workflows in a Cloud
Environment,” IEEE Transactions on Cloud Computing, vol. 6, no. 1,
pp. 2–18, 2018.

[16] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: a deadline-
constrained workflow scheduling algorithm for multicore resources on
the cloud,” Journal of Supercomputing, vol. 73, no. 2, pp. 756–781,
2017.

[17] Z. Zhu and X. Tang, “Deadline-constrained workflow scheduling in
IaaS clouds with multi-resource packing,” Future Generation Computer
Systems, vol. 101, pp. 880–893, 2019.

[18] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A Performance Analysis of EC2 Cloud Computing Ser-
vices for Scientific Computing,” in International Conference on Cloud
Computing, CloudComp 2009. Springer, 2010, pp. 115–131.

[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[20] M. Niu, B. Cheng, and J. L. Chen, “GMAS: A Geo-Aware MAS-Based
Workflow Allocation Approach on Hybrid-Edge-Cloud Environment,”
in 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD). IEEE, 2020, pp. 574–581.

[21] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary Multi-Objective
Workflow Scheduling in Cloud,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 5, pp. 1344–1357, 2016.

[22] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su, and K. Vahi,
“Characterization of scientific workflows,” in 2008 Third Workshop on
Workflows in Support of Large-Scale Science, 2008, pp. 1–10.

[23] K. Deng, K. Ren, M. Zhu, and J. Song, “A Data and Task Co-Scheduling
Algorithm for Scientific Cloud Workflows,” IEEE Transactions on Cloud
Computing, vol. 8, no. 2, pp. 349–362, 2020.

354

		2021-11-06T03:50:23-0400
	Certified PDF 2 Signature

