IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

ET2FA: A Hybrid Heuristic Algorithm
for Deadline-Constrained Workflow
Scheduling in Cloud

, Bin Qian

1807

Zaixing Sun*, Boyu Zhang, Chonglin Gu™, Ruitao Xie , and Hejiao Huang

Abstract—Cloud computing is an emerging computational infrastructure for cost-efficient workflow execution that provides flexible
and dynamically scalable computing resources at pay-as-you-go pricing. Workflow scheduling, as a typical NP-Complete problem, is
one of the major issues in cloud computing. However, in the cloud scenario with unlimited resources, how to generate an efficient and
economical workflow scheduling scheme under the deadline constraint is still an extraordinary challenge. In this article, we propose a
hybrid heuristic algorithm called enhanced task type first algorithm (ET2FA) to solve deadline-constrained workflow scheduling in cloud
with new features such as hibernation and per-second billing. The objectives to be minimized include the total cost and total idle rate.
ET2FA involves three phases: 1) Task type first algorithm, which schedules tasks based on topological level and task types, and utilizes
a compact-scheduling-condition based VM selection method to assign each task. 2) Delay operation based on block structure, which
further optimizes total cost and total idle rate based on block structure properties. 3) Instance hibernate scheduling heuristic, which
sets an instance to hibernate if idle for a duration. Extensive simulation experiments based on seven well-known real-world workflow

applications show that ET2FA delivers better performance in comparison to the state-of-the-art algorithms.

Index Terms—Workflow scheduling, cloud computing, deadline constraint, directed acyclic graph, hibernate instance

1 INTRODUCTION

LOUD computing is emerging as a primary computing
Cparadigm that is researched, developed, and deployed
by academia, industry and government in recent years [1],
[2]. In a cloud platform, the computing resources are hetero-
geneous, elastic, and almost unlimited, which can be leased
at any time in a pay-as-you-go service model [3]. Recently,
some cloud service platforms, such as AWS EC2, Google
Cloud, Microsoft Azure, etc., have introduced instance
hibernate (suspended or deallocated) function in a lifecycle
of an instance, which can save the instance booting time
and rental expenses. In addition, they also support per-

o Zaixing Sun, Chonglin Gu, and Hejino Huang are with the School of Com-
puter Science and Technology, Harbin Institute of Technology (Shenzhen),
Shenzhen 518000, China, and also with the Guangdong Provincial Key Labo-
ratory of Novel Security Intelligence Technologies, Shenzhen 518000, China.
E-mail: szx_1010@stu.hit.edu.cn, {guchonglin, huanghejino}@hit.edu.cn.

e Boyu Zhang is with the School of Artificial Intelligence, Changchun Uni-
versity of Science and Technology, Changchun 130000, China.

E-mail: 2583392480@qq.com.

o Ruitao Xie is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518000, China. E-mail: drtxie@gmail .com.

e Bin Qian is with the School of Information Engineering and Automation,
Kunming University of Science and Technology, Kunming 650500, China.
E-mail: bin.qian@uip.163.com.

Manuscript received 7 January 2022; revised 23 July 2022; accepted 2 August
2022. Date of publication 5 August 2022; date of current version 12 June
2023.

This work was supported in part by Shenzhen Science and Technology Program
under Grant JCY]20210324132406016, in part by the National Natural Science
Foundation of China under Grant 61732022, and in part by the Guangdong
Provincial Key Laboratory of Novel Security Intelligence Technologies under
Grant 2022B1212010005.

(Corresponding author: Chonglin Gu.)

Digital Object Identifier no. 10.1109/TSC.2022.3196620

second billing, which brings customers closer to being billed
ONLY for the time when resources are actually used. These
two measures will enable customers to make full use of the
elasticity of cloud computing to save costs.

Workflow has been proved to be an efficient and popular
paradigm to model various scientific computing problems
with massive amounts of data and complex constraints in vari-
ous fields, such as astronomy, bioinformatics, and phys-ics [3],
[4]. It is usually described by directed acyclic graph (DAG), in
which nodes represent application tasks, and directed edges
represent inter-task data dependencies [5]. Based on its power-
ful computing capability, the infrastructure as a service (IaaS)
cloud offers users a new utility-based platform to execute large
scale workflows [6]. Customers can execute their workflows by
renting resources from cloud service providers. The essence of
workflow scheduling is to establish a set of effective mapping
relationships from tasks to virtual machines (VMs) in cloud to
minimize makespan or monetary cost under the constraints of
Quality of Service (QoS, such as deadline), so as to achieve effi-
cient utilization and balanced allocation of system resources.

Workflow scheduling makes the following decisions or
trade-offs: (1) Determining the scheduling sequence of tasks.
Workflow tasks contain dependency constraints. Although
tasks can be divided into topological levels and scheduled in
turn according to the levels, the scheduling of tasks in the
same level can be reduced to the bag-of-tasks scheduling
problem, which is still NP-Hard. (2) Selecting VM. To exe-
cute a workflow at low cost, the low-cost VM will be selected.
In this way, the task takes long time to execute, which may
result in a deadline miss. To finish the workflow as early as
possible, the VM with high computing power will be
selected. In this way, the task has short execution time, and it

1939-1374 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-7198-9261
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0002-2030-957X
https://orcid.org/0000-0002-2030-957X
https://orcid.org/0000-0002-2030-957X
https://orcid.org/0000-0002-2030-957X
https://orcid.org/0000-0002-2030-957X
mailto:szx_1010@stu.hit.edu.cn
mailto:guchonglin@hit.edu.cn
mailto:huanghejiao@hit.edu.cn
mailto:2583392480@qq.com
mailto:drtxie@gmail.com
mailto:bin.qian@vip.163.com

1808

is easy to meet deadline, but with high cost. In addition,
when more VMs are used, tasks are scattered over VMs,
increasing data transmission time among tasks and the idle
time of VMs. Therefore, for VM selection, we should not
only choose the appropriate VM type to meet deadline with
low cost, but also avoid using too many VMs in order to
reduce data transmission time and idle time.

Since workflow scheduling problem is NP-Complete [7],
[8], [9], its solution methods [10] mainly include heuristic
algorithms [7], [11], [12], [13], [14], meta-heuristic algorithms
[4], [15] and artificial intelligence algorithms [16], [17]. Heuris-
tic algorithms depend on the nature of the problem, and are
designed according to the characteristics of the problem.
Meta-heuristic algorithms and artificial intelligence algo-
rithms are usually independent of the problem, and perform
iterative optimization through a certain evolution mechanism
[18]. When selecting resources for tasks, these algorithms usu-
ally randomly select resources without guidance. The existing
algorithms usually need to adjust the control parameters
manually, and run for a long time due to their slow conver-
gence speed. Moreover, when the execution scenario has new
features, the original scheduling algorithm is no longer appli-
cable. In this paper, we consider a cloud environment with
new features of hibernation and per-second billing.

Aiming at the significance of workflow scheduling in
cloud and the deficiency of current algorithms, this paper
proposes a hybrid heuristic algorithm called enhanced task
type first algorithm (ET2FA) for deadline-constrained work-
flow scheduling in cloud to minimize the total cost and total
idle rate. In cloud, the billing method is per-second billing
with a minimum of 60 seconds. The heterogeneous VM
instances are acquired and released dynamically, and they
can also be hibernated. VMs with different configurations
have different bandwidths. The main contributions of this
paper are as follows:

e A cloud-based workflow scheduling model is estab-
lished, which rents VM instances in a per-second
mode while considering hibernating the idle VMs at
a much lower price.

e We creatively propose a task scheduling algorithm
based on topological level. Within each level, we prior-
itize the tasks according to the workflow structure.
When assigning each task, we devise a compact-
scheduling-condition based VM selection method,
which can reduce data transmission time and idle
time.

e We theoretically prove a determination condition that
can simultaneously save cost and improve resource
utilization by analyzing the property of the block
structure (a sequence of tasks are continuously exe-
cuted without idle intervals on the same VM), and
then propose a delay operation based on block struc-
ture to further optimize total cost and total idle rate.

e By simulation experiments with seven well-known
real-world workflow applications, the proposed algo-
rithm is verified to outperform five baseline algorithms
(including two heuristic algorithms, two meta-heuris-
tic algorithms and a reinforcement learning algorithm),
in total cost, total idle rate and running time of
algorithms.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

A preliminary result of our work was presented at the
conference IEEE CLOUD 2021 [19]. Compared with previ-
ous work, this paper includes significant new contents: 1) A
new cloud resource model is considered, which includes
instance hibernation mode and per-second billing with a
minimum of 60 seconds, and does not limit the number of
instances. 2) During VM selection for each task, we prefer-
entially select the VMs with running tasks at current topo-
logical level and then its upper level. This can make the
scheduling more compact. 3) To further optimize total cost
and total idle rate, delay operation based on block structure
is proposed by analyzing the property of block structures.
4) Instance hibernate scheduling heuristic is designed to
hibernate instance if idle for a duration.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the cloud work-
flow scheduling model, including resource model, work-
flow application model, deadline model and workflow
scheduling. Section 4 provides details of ET2FA to address
this problem. Section 5 presents the experimentation and
evaluation. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Workflow Scheduling Problem in Cloud

A substantial number of research efforts have been devoted
towards solving the cost and maximum completion time
issues of workflow scheduling. According to different execu-
tion scenarios, the workflow scheduling problem has differ-
ent characteristics. The execution scenarios (resource
models) are evolving from homogeneous single-core process-
ors to multicore processors with heterogeneous resources.

In homogeneous resource environment, all computing
resources have the same configuration of CPU, memory,
etc. Byun et al. [20] proposed a partitioned balanced time
scheduling algorithm, which estimates the minimum num-
ber of computing hosts required to execute a workflow
under user deadline, minimizing the financial cost during
the entire application lifetime. Wu et al. [11] proposed a
two-stage method minimal slack time and minimal distance
algorithm and VM instance hour minimization for deadline
constrained DAG applications deployed on cloud.

In heterogeneous scenes, Abrishami et al. [12] proposed
IaaS Cloud Partial Critical Paths (IC-PCP) for minimizing
the cost of workflow execution under deadline constraints.
IC-PCP constructed critical paths of the service processes,
and the tasks on each critical path are assigned to a cheapest
VM that satisfies the deadline constraints. Rodriguez et al.
[4] considered VM boot time and developed particle swarm
optimization (PSO) to minimize overall workflow execution
cost while meeting the deadline constraint in clouds. How-
ever, they mainly designed the resource provisioning and
scheduling strategy, and there was no improvement on the
PSO. Sahni et al. [13] considered the VM performance vari-
ability and instance acquisition delay, and proposed Just-in-
Time (JIT-C) algorithm to minimize cost of workflow execu-
tion under deadline constraints. In JIT-C algorithm, tasks
with serial characteristics are merged, which reduces the
cost of data transmission and the complexity of problem
solving to a certain extent. Xiao et al. [5] proposed a cooper-
ative coevolution genetic programming (CCGP) algorithm

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

SUN ETAL.: ET2FA: AHYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD

to minimize the makespan. The CCGP algorithm automati-
cally learns two high-level heuristics through genetic pro-
gramming. Song et al. [1] broke the tradition of atomic tasks
and devised a new workflow scheduling model, which
modeled the heavy tasks as composite tasks, and assigned
multiple service instances to execute a composite task. To
solve this problem, they proposed a nested particle swarm
optimization algorithm to optimize the scheduling order of
tasks and instances respectively. Domanal et al. [21] consid-
ered real-time workflow scheduling and presented a novel
hybrid bio-inspired algorithm by integrating the modified
particle swarm optimization and modified cat swarm opti-
mization algorithm to the efficient and rapid allocation of
resources to the clients. Their algorithm not only reduces the
average response time but also increases the resource utiliza-
tion by approximately 12%. Qin et al. [22] proposed a knowl-
edge-based adaptive discrete water wave optimization
(KADWWO) algorithm to solve the cost-minimization and
deadline constraint cloud workflow scheduling problem.

With the development of multicore processor technology,
Deldari et al. [23] established a heterogeneous computing
resource model, in which each multicore processor consists
of several homogeneous cores, and proposed a cluster com-
bining algorithm, to minimize the execution cost while
meeting the deadline constraints submitted by users. Zhu
et al. [24] considered both the multiprogrammed use of
computing resources on heterogeneous laaS platforms and
the multi-resource demands of tasks, and proposed a new
list-scheduling framework. To make full use of cloud
resources, this framework can efficiently pack tasks onto
VMs and support the dynamic expansion of VMs in the
scheduling process. Based on this framework, a deadline-
constrained workflow scheduling algorithm was proposed
to minimize the cost of workflow execution.

Most of the aforementioned studies focus on conven-
tional cloud environment, and a few studies involve VM
boot time. In fact, some characteristics, such as data trans-
mission and startup time, can’t be ignored. This paper stud-
ies a more realistic scenario, which considers heterogeneous
resources with unlimited number, VM boot time, VM band-
width and hibernate function, etc.

2.2 Workflow Scheduling Algorithm in Cloud
The existing heuristic algorithms for the cloud workflow
scheduling mainly include the following: Heterogeneous
Earliest Finish Time (HEFT) [7], [25], Load Balancing Tech-
niques [26], Priority or Deadline Based Scheduling Algo-
rithm [27] and other algorithms [11], [12], [13], [14].
Heuristic algorithms are suitable for problems with rules to
follow, such as inter-task data dependencies in workflow.
Due to its advantages in convergence speed and accu-
racy, Meta-heuristic algorithm is one of the common strategies
to solve NP-Hard optimization problems. At present, the
common meta-heuristic algorithms for solving workflow
scheduling problems mainly include Particle Swarm Opti-
mization [4], [28], Ant Colony Optimization [6], [15], [29],
HYBRID bio-Inspired algorithm [21], Squirrel Search Algo-
rithm [30], Genetic Algorithm [31], etc. These algorithms
overcome the shortcomings of traditional analytical algo-
rithms to a great extent, and provide new ideas and means
for solving scheduling problems. Further research on this

h
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from

1809

kind of technology and its better application in solving
scheduling problems will undoubtedly have a positive
impact on the development of scheduling technology and
other constrained combinatorial optimization problems.

Artificial intelligence algorithm has also been studied in the
field of workflow scheduling in cloud environment in the
last few years, such as Q-Learning [16], [32], Artificial Neu-
ral Network [33], Bayesian Network [17] and so on. For
example, Zhao et al. [16] proposed QL-HEFT which com-
bines Q-Learning with HEFT. The QL-HEFT utilizes
upward ranking values from HEFT which are used for
reward in Q-learning process. The algorithm sorts the tasks
according to the convergent Q-table, and assigns the tasks
to the VMs based on the earliest finish time strategy.

Theoretically, the widespread application and develop-
ment of workflow scheduling technology depends not only
on the improvement and development of various heuristic
algorithm technologies based on natural laws, but also on
the deep understanding and research of scheduling domain
knowledge, so as to organically combine the algorithm and
prior domain knowledge of the problem to achieve global
optimization. Therefore, it is of great significance to study
the scheduling problem theoretically for developing optimi-
zation technology and solving complex combinatorial opti-
mization problems.

3 CLoubD WORKFLOW SCHEDULING MODEL

In this section, the resource model and workflow applica-
tion model are described, and then the workflow scheduling
model is established. To facilitate reading, the symbols and
variables commonly used in this paper are listed in Table 1.

3.1 Resource Model
3.1.1 Resource Configurations

Cloud service providers deliver computing resources to
customers at different prices via heterogeneous VM instan-
ces with various of CPU, storage, and network bandwidth,
without limiting the number of VMs. Let P = {p;|k =
1,2,...,m} represent the set of all instance types, where m
is the total number of types. VM instances have the follow-
ing characteristics:

e U ={U(pi)|pr € P} is the set of processing capacity
of CPU in Giga Floating Point Operations Per Second
(GFLOPS, a widely used metric [4], [13], [32]), where
Ul(py) is the processing capacity of instance type py.
The higher the processing capacity of CPU, the
shorter the execution time of its task.

e B =1{B(py,pn)lpr,pn € P} is the set of communica-
tion bandwidth between different instance types.
B(py,pr) is the communication bandwidth between
instance types p, and p,, which depends on the
smaller bandwidth of the two instances (denoted
as b(py) and b(pp), respectively) [34], [35]. That is,
B(pi, pn) = min{b(px), b(pn)}-

o M={M(p)lpr € P} is the set of leasing prices,
where M (py,) is the per-unit price of instance type py.

Let V = {v1,v9,...,|V|} represent the VM instances

leased by a customer, where |V is the total number of VMs.
v’ = p; represents instance v;,s type. Yé]E: U(v}) represents

E Xplore. Restrictions apply.

1810 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023
TABLE 1 Time period to be billed- [] ’g,'old startup
Symb0|s and Meanings .MI 4’ M F .M] _ S;;r;;;tgrtup
Active state H H Active state
Symbol Definition ‘P ending!ﬁﬁ%{uféﬁ Stopped-.-.: ;f/f{/{m'n;ﬁgé";/ Terminate ‘
o 1 it t t 1)

Constants ¢ e ‘o ‘ ©
ol The instance v,’s type. Fig. 1. An illustration of the uptime segmentation of instance lifecycle.
oY The instance v;,’s processing capacity.
o The instance v,’s per-unit price. state and the task can be executed. M is the per-unit
a; A task in the DAG. price of the instance in active state (cold/warm
w; The computation of task a;. startup and running), as shown in Fig. 1.
dij The amount of data to be transferred from task a; to task a;. 2) Hibernation state. When hibernating instance, it enters
Suc(a;) The sets of all direct successors of task a;. stopping state, which is the process of transition from
Pre(a;) The sets of all direct predecessors of task a;. running state to hibernation state, and then enters
Y_anables o stopped state. When an instance enters hibernation state,
tfﬁ The execution time of a task a; on VM v,. its contents in the instance memory (RAM) will be saved
i The VM where task a; is executed. to Elastic Block Store (EBS) root volume. Only EBS vol-
o The actual start time of task a;. 1

b . umes and elastic IP are charged in the hibernation state".
t; The actual finish time of task ;. . .
- , . If needed, an instance can be released (terminated)
t, The lease start time of instance vy,. . . . H
S) , directly in the running state and no longer charged. M
ty The lease end time of instance vy,. -

A , i is the per-unit price of the instance in hibernation state
t4 The available start time of task a; on VM vj,. . R

i) , . (stopping and stopped), as shown in Fig. 1.
| % The VM set with running tasks at current topological level. . . .

P . .) .) In a life cycle of an instance, cold startup time (¢ —tp),

\% The VM set with running tasks at immediately preceding

topological level.

instance v,’s processing capacity. v} = M(v]) represents

instance v;,’s per-unit price.

The pricing model is based on a pay-as-you-go billing
scheme and the users are charged for the number of time
intervals for the instances they lease, even if the last time
interval is not fully used. The time interval is the minimum
billing period. It is determined by the service policy of a
cloud service platform. In this paper, the time interval is 1
second with a mandatory-minimum of 60 seconds when-
ever an instance switches to a new state. For example, the
billing time of the period [t1, 2], 11 < to s,

g(tl, tQ) = [maX{(tg — t1)760}1. (1)

In reality, cloud providers charge storage services for
storing data files according to the allocated capacity, but
these costs are not accounted for in the resource model since
they are independent of the scheduling algorithms. It is
assumed that instances have sufficient RAM for tasks and
the CPU capacity is considered as the only factor that deter-
mines the execution time of tasks.

3.1.2 Instance Lifecycle

Fig. 1 illustrates the diagrammatic sketch of the uptime seg-
mentation of instance lifecycle. According to the rental unit
price, it can be divided into the following two states:

1) Active state. When an instance is created, the cloud
service provider prepares the operating system and
application server specified by user. This time period
is called pending state and not billed. Then the user
launches the instance and deploys the execution
environment of the workflow. This process is called
cold startup, and when the user launches an existing
(and stopped) instance, this process is called warm
startup. After startup, the instance enters the running

warm startup time (t5—t4) and stopping time (t3—t2) are
generally known, while running time and stopped time are
determined by the scheduling time of tasks. It is worth not-
ing that a new instance billing period will start again when
the state is switched, with 60s minimum charge. Thus, the
rental cost of the instance in Fig. 1 is as follows:

cost = (g(to, t2) + gts, te)) M’ + g(ta, ta) M. 2

3.2 Workflow Application Model
Workflow is represented by directed acyclic graph (DAG)
G = (A, W, E, D), which are described as follows:

o A={ali=1,2,...,n} is the set of tasks, where q; is
a task in the DAG and n is the total number of tasks.

o W = {wli € A} is the set of weights on tasks, which
represents the computation of tasks in giga floating
point operations (GFLOP). t5 = -+ is the execution
time of a task a; on VM vy,. K

o kK= {eij = (ai,aj)\a,,-,aj €Al < j} is the set of
dependencies between tasks. Dependency (a;,a;)
refers to a precedence constraint between tasks a;
and a;. The sets of all direct successors and predeces-
sors of task a; are denoted as Suc(a;) = {a;|(a;,q;) €
E} and Pre(a;) = {aj|(aj,a;) € E}, respectively.

e D ={djle;j € E} is the set of transmitted data,
where d;; represents the amount of data to be trans-
ferred from task a; to task a;, in GFLOP. Let t//" =

e }g.fpp) represent the communication time between
k"h

task a; and task a;, where task q; is executed on VM
v and task a; is executed on VM v;,. When k = h, the
transmission time on the same VM is 0.

A sample workflow is shown in Fig. 2a. Each node repre-
sents a task and each edges represents the dependencies
between tasks. The configurations of the nodes and edges are
shown in Table 2.

1. Since this paper does not consider the memory constraint, only
the cost of elastic IP is considered in the hibernation state.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

SUN ETAL.: ET2FA: AHYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD

@g%@@

(@)

(a) Sample DAG with 9 tasks.

as B Booting

=
EEE Hibernate
6 ag

0 500 1000 1500

2000 Time/s

(b) Gantt chart of corresponding task scheduling.

Fig. 2. A simple workflow and its corresponding schedule. In (a) each
node represents a task and the edges show the dependencies between
tasks. In (b) each task is mapped onto one available VM, and the depen-
dencies between tasks are all satisfied.

3.3 Deadline Model

The deadline of workflow is an important constraint for the
workflow scheduling problem. If the deadline is relaxed,
there is enough slack time to accommodate for the VM acqui-
sition delay and the performance variation. A comprehen-
sive evaluation requires performance analysis on all possible
deadlines. Deadline is usually set by the following rule [11],
[13]. We use the maximum execution time ¥ =max{t |p; €
P} and the maximum transmission time fg :max{bii lpn € P}
to estimate start and finish time:

- 07 Zf]Jre(ai) :®7
= ‘ T , 3
MAXq e Pre(a;) {tj +15 }, otherwise.
;F ;S | IE
=17 + 17 4)
The deadline is set to:
deadline = pu x max{fﬂai € A}, (5)

where u € {0.8,1.1,1.5,1.8} is deadline factor.

3.4 Workflow Scheduling

Workflow scheduling is to schedule the tasks of a workflow
to the VMs on a cloud platform. In essence, workflow sched-
uling establishes a mapping between the tasks and the VMs.
Fig. 2b shows a sample schedule generated for the workflow
in Fig. 2a. The VM types are selected in the simulation
experiment in Section 5.1.1.

This work focuses on finding a schedule to execute a
workflow on an Iaa$S cloud such that total cost and total idle
rate are minimized while meeting the user defined deadline
constraint. A schedule is represented as Il = (V4, 7% TT)
and R = (T°,T%, TH THE) and the objective is f(II, R) =
(total cost,total idle rate).

e VA= {vl]i € A} is the mapping of the tasks to the
VMs, where v/ represents the VM where task a; is
executed.

o T9={t’lic A} and TF = {tI'|i € A} are the set of
actual start time and finish time of tasks, respectively.

o T5={f|heV} and TF = {tF|h € V} are the set
of lease start time and lease end time of VMs,
respectively.

1811

TABLE 2
The Configurations of Nodes and Edges in Fig. 2a
A w E D E D
a 120204 (a1, as) 443 (ag, ag) 1359
as 176974 (a1,as3) 137 (ar, ag) 1034
as 6943 (CL1, a4) 1478 ((],87 ag) 157
a4 117952 (al, (ls) 466
as 34835 (a2, ag) 733
ag 74550 (a3, ag) 1005
ar 1777628 (a3, ar) 6943
as 34526 (0,47 a7) 143
ay 136919 (a5, ag) 1151
o TH = {115} and THE = {tIF} are the set of start and

end time of the kth hibernation state of the hth

instance, respectively, whereh € V, k=1,2,..., \t_fs .

The total cost consists of two parts: the cost of running
state (RC) and the cost of hibernation state (HC).

oy g(8, 1), G| =0,
Ry = 4 o (o 80 + S (B HEL) @
+9(|| h)) |tHS| =L
0, 65 =0,
HC), = (7)

MHZth‘g(t;E%?th/\ |t | > 1

Finally, the total cost of executing all tasks in a workflow is
defined as:

|}V:‘1 (Rch + HC/L) . (8)

total cost =

Although the number of resource is not limited, the
leased instance should also be well utilized. The other goal
of the scheduling is to reduce the idle time as much as possi-
ble, which is measured by total idle rate in Eq. (9). The
smaller the Value the less idle the rented instance resources
are. In t5, v =h. Moreover, this goal avoids this situation:
even if the resource utilization is small, the total resource
utilization may be high due to the large scale resources.

v
. _ A Z? ih
total idle rate = Z 1-— tE tS .)

h=1

Based on the previous definitions, the workflow schedul-
ing problem can be formally defined as follows:

Minimize total cost, total idle rate (10)
subjectto max{t/|i € A} < deadline, (11)
th<t?, (a;,q;) €E. (12)

4 THE PROPOSED WORKFLOW SCHEDULING
ALGORITHM

Cost saving can be achieved through three ways: selecting
suitable VMs for the tasks, reducing unnecessary idle time

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

1812 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

TABLE 3
Three Main Phases of ET2FA

Section Phase Description

4.1 T2FA Establish the mapping of tasks to resources.

4.2 DOBS Theorem 1 is used to further optimize the
results of T2FA to reduce cost and
unnecessary idle time.

43 IHSH Determine when and which state the
instance should be switched.

and setting idle instances to hibernate. Therefore, a work-
flow scheduling algorithm named Enhanced Task Type
First Algorithm (ET2FA) is proposed, which is a hybrid heu-
ristic algorithm composed of three stages, as described in
Table 3.

4.1 Task Type First Algorithm (T2FA)

In a workflow, there are some tasks with special characteris-
tics. For example, (1) a sequence of tasks with certain struc-
ture can be regarded as one task to simplify workflow; (2)
the finish time of a task affects all the start time of its subse-
quent tasks; (3) the finish time of two or more tasks jointly
determines the start time of their successors. Considering
these particularities, such tasks can be given priority in our
scheduling. Compact scheduling and data transmission are
the main factors that affect the total cost and total idle rate,
which can be adjusted during VM selection. Based on the
above analysis, this section proposes T2FA.

4.1.1 Task Topological Level

Given a DAG-based workflow, its task a;’s topological level
Lev(a;) is defined as [11]:

0, if Pre(a;) = 2,
Lev(a;) = max {Leu } + 1, otherwise. (13)

aj€Pre(a;)

Thus, the set af; € A" of task in each level can be obtained,
as shown in Eq. (14).

af = {a;|l = Lev(a;),a; € A}, (14)

where af represents the ith task in the Ith level, [=
0,1,...,max{Lev}, i = 1,...,|aF|, and |aF| is the number of
tasks in Ith level. Especially, tasks at a lower topological
level have higher priorities than tasks at a higher level [11].

When there is only one task in a certain level, whether
the task can be executed as early as possible plays a key role
in the whole workflow scheduling. It should be assigned to
VM with higher configuration or earlier completion time.
Therefore, it is classified as the Oth type of task (.e.,
Eq. (15)), and a scheduling strategy is designed separately
for it when scheduling tasks.

Typey = {ai|ai € alL7 |aﬂ = 1}. (15)

4.1.2 DAG Structure Decomposition

By analyzing the composition characteristics of the upper
and lower nodes in the DAG, it can be summarized into the
four structures of Fig. 3. The details are as follows.

(c) Single output multiple input.

Type

OO0)

(a) Single output single input. (b) Multiple output single input.

|
= Types
Types

d) Multiple output multiple input.

Fig. 3. Four structures in DAG.

In Fig. 3a, the structure is single output single input
(50SI), which is a typical serial structure and satis-
fies the following constraints.

|Suc(a;)| = Z |Pre(aj)| = 1. (16)

a;j€Suc(a;)

The best strategy is to assign the tasks to same VM, so
they can be merged as a task block. The execution time of
the task block is the sum of its internal task execution
time, and the data transmission within the structure is
0. After task merging, DAG can be simplified, and both
the solution complexity and space can be reduced.

For example, tasks a5 and ag in Fig. 2a are merged
into task as g in Fig. 2b.
In Fig. 3b, the structure is multiple output single
input (MOSI), in which the parent node has multiple
child nodes, and the child nodes have a unique par-
ent node. The structure satisfies the following con-
straints.

|Suc(ai)] = > |Pre(a;)] > 1. an

aj€Suc(a;)

Child nodes are parallel structures, and their start
time depends on the unique parent node. To facili-
tate scheduling, the parent node q; is defined as the
first type of node Type;, child node a; is defined as
the second type of node Type,.

Typey; = {a;|a; satisties Eq. (17)}, (18)
Types = {aj|aj € Suc(a;),a; € Typel}. 19)

In Fig. 3¢, the structure is single output multiple input
(SOMD), in which the parent nodes have unique child
nodes, and the child node has multiple parent nodes.
The structure satisfies the following constraints.

|Pre(a;)| = > |Suc(ai)] > 1. (20)

a;€Pre(a;)

Parent nodes are parallel structures, and their finish
time jointly determine the start time of the child
node. To facilitate scheduling, the parent node q; is
defined as the third type of node Types, child node a;
is defined as the fourth type of node Tiype,.

Types = {a;|a; satisfies Eq. (20)}, (21
Typey = {aj|aj € Suc(a;),a; € Typeg}. 22)

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

SUN ETAL.: ET2FA: AHYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD

e In Fig. 3d, the structure is a general case of multiple
output multiple input (MOMI) and is not analyzed
separately.

4.1.3 Task Scheduling and VM Selection

For VM selection, VM is first selected from the VMs with
assigned tasks, which can make the scheduling more com-
pact. Let {* represent the maximum finish time of all sched-
uled tasks. One of the characteristics of workflow tasks is
parallelism, and #* is often the dividing point of task execu-
tion in two adjacent levels. Therefore, ¢* and the VMs with
running tasks at the two adjacent levels are used as compact
scheduling conditions.

Available start time refers to the earliest start time when
a task is assumed to be executed on a specified VM, which
is determined by the actual finish time of its predecessor
task and the current completion time of the VM. For exam-
ple, i € T* represents the available start time of task a; on
VM vy, It is obtained as given in Eq. (23).

i, if Pre(a;) = @,
7A
Lip= max{ max {tf + t;‘lh}, t};}, otherwise,
aj€Pre(a;) L -

ih —

(23)

where k = UJ,A is the assigned VM of task aj. ¢} is the current
completion time of VM v, and not less than the duration of
cold startup if VM v, is new created.

The start time of a task a; on all available VMs can be
obtained by Eq. (23). We need to select a VM to execute the
task and determine the actual start time of the task (i.e., t9).
For compact scheduling, we prefer to assign the task with
that at the same topology level together. In order to reduce
data transmission among VMs, we prefer to assign the task
with its predecessors together. Therefore, VMs that can exe-
cute this task are regarded as candidate set and divided into
the following three layers:

e The first layer is the VM set V¢ with running tasks at
current topological level;
e The second layer is the VM set V¥ with running
tasks at immediately preceding topological level;
e The third layer is all available VMs, including leased
VMs set V and non-leased VMs set with all VM types.
The VM candidate sets are traversed layer by layer until
T# is determined. In each layer, if the smallest 74 is less
than *, the corresponding T is taken as the ¢
Through the above process, the actual start time ¢; of the
task a; and the VM v! deployed by the task can be obtained
simultaneously. The actual finish time of task a; (i.e., tI) is
equal to the sum of actual start time and execution time. See
Algorithm 2 for details.

4.1.4 Procedure for T2FA

T2FA is designed according to the characteristics of resource
model and workflow application model, the detail of which
are given in Algorithm 1.

Pre-processing (lines 1-5 in Algorithm 1). Through the
structural decomposition of DAG in Section 4.1.2, DAG can
be simplified by Eq. (16) (line 1 in Algorithm 1). Then divide
the task topological level and determine the tasks at each

1813

level (line 2 in Algorithm 1). Set the candidate VMs
set and the expected maximum finish time #* (lines 3-5 in
Algorithm 1). For DAG-based workflow scheduling, the
selection of the first VM is crucial, which lays the founda-
tion of scheduling.

Algorithm 1. T2FA

Input: Resource (P, U, B, M), workflow (A, W, E, D), deadline
Output: [T = (VA, 75, TF)

: Simplify DAG by Eq. (16);

: Compute AL using Egs. (13) and (14);

Veo, VP — a;

: k— argmax{U(h)|h € P};

VO — {k}, o 7ma‘x{13(\2;6aé} ;

: for ! «— 0 to max{Lev} do

if (Jaf| = D and (£% > 0.1 x max{tf'|a; € A}) then
i)

Deploy the task to VM k that can be finished at the
earliest;
9: ifk ¢ VthenV — VU{k};
10: VP {k}, VO — g;
11: Continue;
12: end
13: Randomly generate a rank from 1 to 4, denoted by Rank ;
14: foreach r € Rank do

—_

® N g e

15: 7+ af NType, ;

16: Type, «— Type, — m;

17: al — af —m;

18: Sort the tasks in 7 in descending order of weight value;

19: call TaskSchedule(r);

20: end

21: Sort the unscheduled tasks in af in descending order of
weight value;

22: call TaskSchedule(al);
23: VP—VY VO — g
24: end

Task scheduling (lines 6-24 in Algorithm 1). In the task
scheduling stage, it is divided into four levels according to
the topology level and task type.

e Level 1is the topological level from low to high (line
6 in Algorithm 1);

e Level 2 is the tasks of Typey (lines 7-12 in Algo-
rithm 1);

e Level 3 is the tasks the other four special types (lines
13-20 in Algorithm 1);

o Level 4 is the tasks of general type (lines 21-22 in
Algorithm 1).

The four special types Type;-Type, are scheduled in ran-
dom order. For tasks of same type, they are arranged in
descending order of task weight, as scheduled in Algorithm 2.
Algorithm 2 gives the details to get the actual start time of
tasks and allocating VMs. In particular (line 8 in Algorithm 1)
and lines 2, 4 and 6 in Algorithm 2), when there are multiple
equal earliest 7, the task is deployed to the VM instance with
the shortest delay for the completion time.

Expected maximum finish time #* is used as a reference
value, and its initial value is set in line 5 of Algorithm 1.
When scheduling tasks, VM with running tasks is preferen-
tially selected. When the available finish time of task is less
than #*, deploy the task to VM with the earliest available

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

1814

finish time; otherwise, select the VM with earliest available
finish time from all VMs and update *. The purpose of set-
ting ¢* is to make scheduling more compact. When there is
no VM in leased VMs set V' meeting the condition (less than
t), a new VM will be applied from the cloud platform and
added to leased VMs set V' (line 7 in Algorithm 2).

Algorithm 2. TaskSchedule(r)

Input: Tasks order =
Output: Scheduling result of these tasks
1: foreach i € = do
if VO # @ then k — argmin{#;|h € VO};
if (V€ = @) or (¢, +t5 > *) then
if VI £ gthen k «— argmin{t/ |h € VT'};
if (VP = @) or (4 +tE > #*) then
k «— argmin{t{|h € VU P};
ifk ¢ VthenV — VU{k};
end
9: end
10: o ek, t7 — 14, tF — 7 15,
11: i tf > " then * — tf;
12: ifk g VCthen VC — VO U {k};
13: end

4.2 Delay Operation Based on Block Structure (DOBS)
When designing scheduling algorithm, there is generally a
commonality: the task is executed as early as possible. If sub-
sequent tasks cannot immediately start executing in time
due to dependency constraints, a certain amount of idle time
will be generated. However, part of the idle time can be
avoided by delaying the start execution time of some tasks.

Definition 1 (Block Structure). It consists of tasks that are
continuously executed without idle intervals on the same VM.
Particularly, when there is only one task, it can also be called a
block structure.

For example, the block structures in Fig. 4a are as fol-
lows: [a1, as, ay, a7], [as s, as], [ag], [ag].

Theorem 1 (Block Structure Property). In a given sched-
uling solution, first block structure on VM vy, is X = [1,2,
o, |X). WhenVz € X,tF > t£', delaying the start time of the
first block structure on the VM can reduce idle time and cost.

Proof. Let | X| + 1 denote the immediate succession task of
first block structure. The idle time behind the block struc-
ture is the difference between the actual start time of task
|X|+1 and the actual finish time of task |X|, that is,
tle\H N tf}‘.

Let £ denote the estimated latest finish time of task z in
the current solution, which is the minimum difference
between the start time and the transmission time of all
direct successor tasks Suc(z), except the successor tasks in
the block structure. When Suc(z) = @, let i = ¢I'. Thus,

oy UA.UA
Inin{tg —Cyy ! },y € (Suc(x) — Suc(z) N X),

t, if Suc(zr) = @.
(24)

i =

x

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

| ling
ag as
1000 1500 2000 Time/s
(a) Before delay operation.
a; BN Booting
3 Qe [
0 500 1000 1500 2000 Time/s

(b) After delay operation.

Fig. 4. Comparison before and after delay operation based on block
structure.

When Vz € X, — I > 0, the block structure can be
moved backward by At without affecting the execution
of other tasks.

At = minf{tS ., — tfy, min{i —]2 € X}}. (25)

Therefore, when the start execution time of block struc-
ture is delayed by At, the cost saved is at least M7 x
|At|. At the same time, due to the reduction of idle time,
the resource utilization of VM will inevitably increase. O

As shown in Fig. 4, when tasks a5 ¢ and a3 satisfy Theo-
rem 1, their start time can be delayed by At = min{tfﬁ—
th min{df, —¢f EF —tF}} = min{146.1, min{897.1,134.3}} =
134.3. The process of delaying tasks can also take advantage
of the pay-as-you-go feature of cloud to save cost. Therefore,
Theorem 1 is applied to adjust the scheduling solution of
T2FA. Traverse the first block structure of each VM until
there is no block structure that satisfies the constraint of
Theorem 1. If the block structure satisfies the constraint of
Theorem 1, the actual start and finish time of related tasks
will be updated. See the Algorithm 3 for details.

Algorithm 3. DOBS

Input: I1 = (V4, 79, TF)
Output: New I1 = (V4,79 TF)

1: repeat
2: foreach h € V do
3: Find X as first block structure in instance vy,;
4: Compute ¢! using Eq. (24), Vz € X;
5: ifVz e X, ' > ¢ then
6: Compute At using Eq. (25);
7: foreach x € X do
8: 9 — 5 + At;
9: th ' + At;
10: end
11: end
12: end

13: until no block is found;

4.3 Instance Hibernate Scheduling Heuristic (IHSH)

Recently, cloud service providers have provided some
instances that support hibernation function. If one instance
is kept being idle for a period, it is wise to hibernate it to save
cost. Nevertheless, frequent hibernation may lead to system
failure or software operation error. Hence, a heuristic is pro-
posed to schedule when to hibernate an instance. Once each
state is determined, the total cost and total idle rate can be

SUN ETAL.: ET2FA: A HYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD 1815
TABLE 4 TABLE 5
Configurations and Prices of Virtual Machines? List of Other Parameters and Their Values
VM Type ECU Processing Cost Bandwidth Parameter Symbol Value
Capacity (GFLOPS) _ (§/h) (Gbps) The duration of cold startup Dur® 55.9s
1 c3large 7 30.8 0.128 1 The duration of warm startup Dur" 34.0s
§ C33'2X1?rge ;g 1621362 8;?13 1; The duration of stopping Dur? 5.6s
e.exarge : ’ The shortest duration of hibernation Durf 60.0s
4 Sdxarge > 242 1021 3 The minimum gap between two adjacent ~ Gap” 120s
5 38xlarge 108 4752 2,043 3 : rmum gap |) p
hibernation in one instance
ElasticIP cost M 0.005$/h

a. Manually set according to the VM configuration.

obtained. Traverse each idle interval between in instance,
and set the idle interval to hibernation mode when the
requirement of hibernation is met. The requirements of hiber-
nation may be the shortest duration of hibernation and the
minimum gap between two adjacent hibernation in one
instance. According to the scheduling results of T2FA and
DOBS, the tasks executed on each instance and their start
and finish time are known. Let S;; represent the jth task exe-
cuted on instance v;. See the Algorithm 4 for details.

Algorithm 4. IHSH
Input: IT = (V4,79 TF)
Output: R=(T°, T, TH THE), f(II,R) = (total cost,total idle rate)
1: foreach h € V do
2: tempT «— 0,7 —1;
3: fork«— 1to]|S,|—1do
4 D Shks 8 < Shk+1);
5: if 15 — tf > DurHtf — tempT > Gap' then
6: s =t 4l — 1§ — Dur'V;
7
8
9
0

p
tempT — tf,j —Jj+1;
end
: end
10: p ~ Sp1, 5 < Suis,i;
11 & Htf—DurP,ff — 1t
12: end
13: Compute f(II, R) = (total cost,total idle rate).

4.4 Time Complexity of ET2FA

The time complexity of ET2FA depends on its three phases.
Let n be the number of tasks and e be the number of edges
in workflow. Since the maximum number of edges is
w;"% in DAG, assume e~0O(n?). Let |V| be the maximum
number of VMs required. In fact, the maximum number of
VMs required will not exceed n, and Wu et al. [11] have
proved that |V|<n—max{Lev}, so assume |V|~O(n). The
time complexity of the ET2FA is analyzed as follows:

e T2FA: O(n?).Inlines 1-2 in Algorithm 1, simplify DAG
and compute A" must traverse all tasks, which can be
done within O(n) and O(n+e) respectively. In lines 6-
24 in Algorithm 1, it is essentially to traverse each task
and allocate resources for the task through 7. In the
process of traversing each task, tasks are divided into
different types. In the worst case, there is only one type
(only lines 21-22 are executed). The time complexity of

2. https:/ /aws.amazon.com/ec2/pricing/on-demand/,
instances.vantage.sh/

https://

sorting is O(n?) in line 21. In line 2 in Algorithm 2, the
time complexity of 7 is O(|V'|). The time complexity
of Algorithm 2 is O(n|V]). Therefore, the time complex-
ity of lines 6-24 in Algorithm 1 is O(nlogn)+O(n|V]).
In summary, the time complexity of T2FA is O(n)+
O(n+e)+0(n?)+0(n|V])=0(n?).

e DOBS: O(n?). In the worst case, there is only one
block structure on each VM, that is, each task needs
to be traversed.

e [HSH: O(n). IHSH needs to traverse each task with a
time complexity of O(n).

According to the above analysis, the time complexity of

ET2FA is O(n?) 4+ O(n?) + O(n) = O(n?).

5 PERFORMANCE EVALUATION

5.1 Simulation Environment
5.1.1 Resource Environment

In simulation experiment, we use 5 representative VM types
from low configuration to high configuration. The VM configu-
rations and their processing capacity are based on current
Amazon EC2 platform, as presented in Table 4. According to
the researches in [3], [4], [36], the processing capacity in
GFLOPS is estimated based on the number of EC2 compute
units (ECU). One ECU currently provides CPU capacity equiv-
alent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.
EC2 usage are billed on one second increments, with a mini-
mum of 60 seconds. As for the booting time of VM, according
to the researches of [37], [38], the cold startup time has been
reduced from 97s to 55.9s for Amazon EC2 Cloud. The warm
startup time is set to 34.0s based on the results obtained by
[38]. Other parameters and their values are listed in Table 5.

5.1.2 Workflow Applications

Seven real-world workflow applications with different
scales (numbers of tasks) from different scientific areas are
adopted in the simulation, as shown in Fig. 5.

The following five real-world workflow applications have
benchmark data: CyberShake, Epigenomics, Inspiral, Montage
and Sipht [4], [12], [13], [16], [39]. Figs. 5a, 5b, 5¢, 5d, and 5e
show the sample DAG structures of these workflows [1], [34].
More details about these workflows can be found in [39]. All
these workflows are generated in form of Directed Acyclic
Graph in XML (DAX) format by Pegasus WorkflowGenerator
[13], [39], and are publicly available on Pegasus website’.

3. https:/ /confluence.pegasus.isi.edu/display/pegasus/
Deprecated+Workflow+Generator

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ec2/pricing/on-demand/
https://instances.vantage.sh/
https://instances.vantage.sh/
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator

1816

O
._O.,
'_O"

s

%

(c) Inspiral.

g

(a) CyberShake. (b) Eplgenomlcs

(f) Gaussian Elimination of problem size 6 (n = 20).

Fig. 5. Seven real-world workflow applications.

These DAX files contain information such as list of tasks,
dependencies between tasks, their computation time and size
of the input/output files generated by the tasks. Similar to
[40], these benchmarks are adaptively adjusted. That is, it is
assumed that these benchmarks are simulated and generated
on a processor with the same configuration as VM ps. The
number of tasks varies from 24-1000.

The following two real-world workflow applications only
have DAG structure: Gaussian elimination and Molecular
dynamics code [7]. In the experiment, the weight of tasks W is
randomly generated from a uniform distribution [1800,180000]
and the amount of data transmitted between tasks D is ran-
domly generated from [18,1800]. The Gaussian elimination is
an algorithm used to solve a system of linear equations. The
total number of tasks n in a Gaussian elimination graph is deter-
mined by the matrix size m, which is equal to n = %
(see Fig. 5). In the experiment, set . = {10, 20, 35,45} and the
corresponding n = {54,209, 629, 1034}. The molecular dynam-
ics code is given in [7], as shown in Fig. 5g. This application has
a fixed DAG structure and the number of tasks n = 41.

To distinguish different problems, a symbol "Workflow
type_Number of tasks’ is adopt , such as "Cyber_30" repre-
sents CyberShake of 30 tasks. In particular, '"Molec_0" repre-
sents the Oth test problem of Molecular dynamics code.

These seven workflow applications have different struc-
tures and characteristics and are widely used to evaluate
the performance of the workflow scheduling approaches.
Their specific characteristics are listed in Table 6. They can
be decomposed into at least two structures in Fig. 3, and all
of them have SOMI structure (Fig. 3c).

5.2 Baseline Algorithms
To illustrate the effectiveness of the proposed algorithm,
five baseline algorithms are implemented for comparison,

TABLE 6

The Structures in Fig. 3 Contained in Different Workflows
Workflow SOSI MOSI SOMI MOMI
CyberShake v v v
Epigenomics 4 v/ 4
Inspiral v 4 4
Montage 4 4
Sipht v v
Gaussian elimination v v v v
Molecular dynamics code v v v

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

T e

d) Montage. e) Sipht.

(g) Molecular Dynamics Code.

including two heuristic algorithms IC-PCP [12] and JIT-C
[13], two meta-heuristic algorithms PSO [4] and KADWWO
[22], and a reinforcement learning algorithm QL-HEFT [16].
These five algorithms are classical in solving the cost-minimi-
zation and the deadline-constrained workflow scheduling
problem. As mentioned in Section 2, IC-PCP divides partial
critical paths based on deadline, and applies recursive
method to schedule tasks to optimize cost. JIT-C schedules
tasks sequentially based on task topological level, combines
the cheapest task-VM mapping for VM selection, and opti-
mizes cost. PSO adopts the sequence based task to resource
mapping method (encoding), schedules tasks to specified
VM (decoding) without violating the dependency between
tasks, and then integrates the coding and decoding into PSO’s
iterative mechanism to optimize cost. KADWWO adopts the
coding and decoding schemes similar to PSO, and designs
the discrete propagation operator, adaptive refraction opera-
tor and breaking operator of WWO. The optimization objec-
tive is to minimize cost under deadline constraint. QL-HEFT
regards tasks as states and actions respectively, takes the
rank value in HEFT as immediate reward, obtains the sched-
uling order of tasks through Q table, and then selects VM by
the earliest finish task rule. It is evaluated on several metrics
such as makespan, efficiency and average response time.

The time complexity of IC-PCP and JIT-C is equal to that
of ET2FA, which is O(n?). The time complexity of PSO and
KADWWO is O(pgn?), where p is the population size and g
is evolutionary generations. The time complexity of QL-
HEFT is O(gn?), where g is the number of iterations. In QL-
HEFT, g is different from that of PSO, which is not a definite
value and is limited by convergence conditions and running
time. It can be seen that the time complexity of ET2FA is the
same as that of other heuristic algorithms, which are smaller
than PSO, KADWWO and QL-HEFT. This is also proved by
the comparison of running time of algorithms.

The parameters of PSO are set according to the optimal
parameters given in [4], which are ¢; =¢;=2.0, » = 0.5, and
the number of particles and iteration times are set to 100.
The parameters of KADWWO are set according to the opti-
mal parameters given in [22], which are NP=5, ¢c=0.4, M =
0.5, ¢ = 0.3, and the maximum number of fitness evaluation
is set to n x 100. For different problems, the running time of
each algorithm does not exceed 1.2 x n seconds. Another
termination condition of QL-HEFT is that the target value
does not change for ten consecutive times, and it is consid-
ered that the algorithm converges.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

SUN ETAL.: ET2FA: A HYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD 1817
Cyber_30 Cyber_50 Cyber_100 Cyber_1000 Epige_24 Epige_46 Epige_100 Epige_997
1.00{ = 0 . efe . . e 0 . e 0 . oA A A AlA A A AlA A A AA A A A
0.754 . A A . Ala a4 s Ala . A
0.504 4 X . .
02517 : M : ! M Iy =« : : ¥ : : v ! Tl s $ 8o o @ e o e o
0.001¢ o * oo * * o] o * sl o * ot o + ¢ty v v v]is ® * F(e o [
Gauss_54 Gauss_209 Gauss_629 Gauss_1034 Inspi_30 Inspi_50 Inspi_100 Inspi_1000
1.00{% =& 22 a 2 A4 a4 2 aA]a a2 2 aA]a a 2 aAla a2 2 aA]a a2 2 aA[a a Y
soslt ¢ v .t S PO
$0.25 L L 2 I I R T 1 PO SR S U - SN S-S § U TS I T
=0.00{¢ ¢ 3% 3 * 3|s = * %% @ * ®|v v v vilv v v v|® ¢ ¢+ ot ¢ L2 1
£ Molec_0 Molec_1 Molec_2 Molec_3 Monta_25 Monta_50 Monta_100 Monta_1000
51.00{% =2 2 aAla a 2 A]a 4 2 Ala 4 2 a4 . . . * e[v e « ele 2 .
20.75 . 4 s = S oalv v v
~ 0.50 * 9 e e e ° L L | < v NP
025{® *® e . e . e . v i x < 4 < < 4 . < < “
0.001* = * ¥ o +* 3|3 ¢ ¢ ¥|e ¥ 3 3v o * *|v o * oo o * oo LR
Sipht_30 Sipht_60 Sipht_100 Sipht_1000 08 1.1 1.5 1.80.8 1.1 1.5 1.80.8 1.1 1.5 1.80.8 1. 1.5 1.8
1.00{% =& 2 A4 a A A4 a A A4 a 2 4
0751 IC-PCP
0.504 ¢ e e o * PSO
0.25e o o e o v oelT T 0t e
HE IR R TR it 3 1t
0.004 . * * $ I 3 LR v QL-HEFT
08 1.I 15 1.80.8 1.1 1.5 1.80.8 1.1 1.5 1.80.8 1.1 1.5 1.8 <« KADWWO
Deadline Factors ¢ ET2FA
Fig. 6. The RPD of total cost of each workflow with IC-PCP, PSO, JIT-C, QL-HEFT, KADWWO, and ET2FA.
CyberShake Epigenomics GaussianElimination Inspiral
1.00 - p<0.05 A p<0.05 - p<0.05 - p<0.05
0.75 =
20.50 - -
So2s ¥ = = - = -
£0.00 - - * - - = =
2 T T T T T T
= MolecularDynamicsCode Montage Sipht 1Cp LSO T QL. gy KAy, LT
~C Dy 128,
5 1.00 = <003 - 005 = <005 < s a7
n0.75 yy Mean + 95% CI
&2 050 = - 2 o - IC-PCP
8(2)(5) - -+ - R © SO
. T T T T T T T T T T T T T T T T T T 4 JIT-C
1C.p LS I E7sr 10 p PSo I By 10y PSo I £
PcpSo e Qfapit e {CrcgSo e Qufanfle{Cechso e CLafaoize, - ouHERT
o o o < KADWWO
Algorithms ¢ ET2FA

Fig. 7. Means plot of RPD of Total Cost with 95.0 percent Tukey HSD confidence intervals.

Since this paper is the first time to study instance hiber-
nation to save cost, for the sake of fairness, the third stage
IHSH is applied to all baseline algorithms. Each algorithm
is repeated ten times, and the mean value is taken as the
final solution obtained by the algorithm. All algorithms are
coded in Python and are executed on Intel Core i5-9500
3.0GHz processor with 32GB RAM.

5.3 Performance Results

To evaluate the impacts of different workflow types and
resource quantity, for each workflow under different dead-
line factors, comparisons of the algorithms are based on the
following three metrics: total cost, total idle rate and run-
ning time of the algorithms. Since workflows with different
types and different scales of task numbers have different
scales of costs, total cost and total idle rate should be nor-
malized before they can be aggregated for comparison. The
original data of the experimental results are available at
https:/ /github.com/szx1010/ET2FA-Performance-Results.
Therefore, the Relative Percentage Deviation (RPD) is used
as the response variable for evaluating the results [24], [41]
and it is defined as follows:

f A f min

RpPDA = 1 - (26)
fmaz‘ - fmin

where f4 is the solution obtained by algorithm A, and fi.,

and f,,4; are the minimum and maximum value achieved

among all the comparison algorithms, respectively. That is,

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington.

the algorithm with RPD = 0 has the best effect on the mini-
mization problem. Running time is the CPU execution time
for the algorithm to obtain the scheduling solution for a
given problem. Although the workflow scheduling problem
is static scheduling problem, in order to provide a practical
solution, running time is the key evaluation metric to mea-
sure the algorithm [1], [7], [35].

One way Analysis of Variance (ANOVA) technique is
conducted for analysing the performance of the proposed
algorithm whether there are statistically significant differen-
ces in the results. The significance level is set to 0.05. As we
know, the ANOVA is frequently employed in the literature
due to an effective statistical analysis [41], [42]. When the
solution obtained by the algorithm cannot satisfy the dead-
line constraint (i.e., infeasible solution), the values of the
three metrics are null.

5.3.1 Comparison of Total Cost

Fig. 6 shows the RPD of Total Cost of each workflow with
different algorithms. For CyberShake workflow, ET2FA and
IC-PCP are obviously superior to other algorithms, but
when deadline factor is 1.1, IC-PCP can’t get a feasible solu-
tion. For Epigenomics, Gaussian elimination and Molecular
dynamics code workflows, except for "Epige 46", ET2FA has
almost the same performance as QL-HEFT, which is supe-
rior to other algorithms. Among them, IC-PCP can’t get fea-
sible solutions for Gaussian elimination workflows except
‘Gauss_209’. For Inspiral workflow, QL-HEFT is the best,

Downloaded on July 26,2023 at 23:37:42 UTC from |IEEE Xplore. Restrictions apply.

https://github.com/szx1010/ET2FA-Performance-Results

T T T
0 50 100 150 200

(a) Gantt chart of scheduling with Inspi 30 over QL-HEFT,
(total cost = 0.32, total idle rate = 2.85).

i3
Vb [
2 g e
VO(F’I)‘. . as
0

200 400 600 800 1000 1200 Time/s

Time/s

az1 28 @22 29d19 26 B Booting

Hibernate

(b) Gantt chart of scheduling with Inspi_30 over ET2FA, (total cost =
0.52, total idle rate = 0.12).

Fig. 8. Comparison Inspiral workflow scheduling of 30 tasks over QL-
HEFT and ET2FA, (deadline = 2136).

followed by ET2FA. For Montage workflow, when the dead-
line factor is 0.8, only QL-HEFT can get a feasible solution
on 'Monta 25" and "Monta 50’. For other problems of Inspiral
workflow, ET2FA can achieve better performance. For Sipht
workflow, the performance of IC-PCP, QL-HEFT and ET2FA
is not significantly different, especially for IC-PCP and
ET2FA, whose performances are almost the same. In addi-
tion, these three algorithms outperform PSO, KADWWO
and JIT-C. For all of Epige 24, Epige 46 and Inspiral work-
flows, ET2FA is slightly worse than QL-HEFT due to the
same reason. Fig. 8 is an example showing the comparison
results under workflow Inspi_30. As shown in Fig. 8a, QL-
HEFT evenly distributes tasks to multiple VMs with high
performance. As shown in Fig. 8b, ET2FA assigns task a3 19
to the VM type with low performance, resulting in a longer
completion time and higher cost. But this still meets the
deadline. The fundamental reason is that when there is a tie
(i.e., multiple equal available start time 7) in line 8 of Algo-
rithm 1 and lines 2, 4 and 6 of Algorithm 2, the VM type with
low performance is selected.

Fig. 7 is plot of RPD of Total Cost with 95.0 percent
Tukey HSD confidence intervals of all algorithms for all
workflows. All p-values are less than 0.05, indicating that

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

all algorithms have a significant different on the response
variable at the 95.0% confidence level.

The better performance of IC-PCP is mainly owing to its
critical path method: when allocating resources for one criti-
cal path, choose from low allocation until there is a VM that
can deploy the whole path. This method basically does not
cause additional data transmission cost. The main reasons
why PSO, KADWWO and JIT-C algorithm can’t always
achieve better performance are as follows: (1) PSO and
KADWWO are swarm intelligence optimization algorithms,
which are random in initialization and need constant itera-
tive optimization to achieve better performance; When
selecting resources for tasks, these two algorithms randomly
select resources without guidance, and do not consider the
impact of data transmission. (2) JIT-C has the cheapest selec-
tion rule when allocating resources for tasks. However, it
may be the cheapest to select resources at a certain time, but
not necessarily the cheapest for the whole workflow.

5.3.2 Comparison of Total Idle Rate

Fig. 9 shows the RPD of Total Idle Rate of each workflow
with different algorithms. Fig. 10 shows means plot of RPD
of Total Idle Rate with 95.0 percent Tukey HSD confidence
intervals of all algorithms for all workflows. All p-values
are less than 0.05 which indicates that all algorithms have a
significant different on the response variable at the 95.0%
confidence level. Total idle rate mainly evaluates the full uti-
lization of the selected VM by the algorithm. As can be seen
from Fig. 10, for Epigenomics, Gaussian elimination and
Molecular dynamics code workflows, the performance of
PSO is worse than other algorithms, and the performance of
other algorithms is almost the same with no significant dif-
ference. For CyberShake, Inspiral and Sipht workflows, IC-
PCP and ET2FA are superior to other algorithms, and their
performance is almost the same, with no significant differ-
ence. For Montage workflow, ET2FA is superior to other
algorithms and has significant differences.

The performance of PSO is always the worst, which
shows that the algorithm can’t make full use of the selected
VM. That is, when allocating resources for tasks, it is neces-
sary to dynamically allocate resources in the scheduling
process, rather than selecting fixed resource types for tasks

Cyber_30 Cyber_50 Cyber_100 Cyber_1000 Epige 24 Epige_46 Epige_100 Epige 997
]OO< *—e *—8 | 0—@ *—o | 0—0 *—® | o—0 *—® ([0—0 *—® | o—0 *— ([0—@ *—o ([0—0 *—=8
0.754 vV v
0501y v B e G “
e R A e e i e e e | B B e
(IR e — e R —] K e I R & o |t—2t— 223 —3—3F 3| s> » — —3
Gauss_54 Gauss_209 Gauss_629 Gauss_1034 Inspi_30 Inspi_50 Inspi_100 Inspi_1000
1.00{ e—o *—8 | 0—@ *— | 0—0 *— | o—0 *—o ([0—0 *— | o—0 *— ([0—@ *—@ vy L 2 *—=8
£0.759
& 0.50 « e — < A e
20.25{ < 44 «— < = ii — 11 |1- o }7 i G $—¢ Y- g —¢
Z0.00{3—e—3—3 e — | ———8 [F—— % 0:5'7 e Y [—— P ——
‘E Molec_0 Molec_1 Molec_2 Molec_3 Monta_25 Monta_50 Monta_100 Monta_1000
= 1.00{e—e P} e P P — 0} — . —e|v_ e F— e
=] Bl - V- = » G — Y
zos RS ERE s S je——
Y- “ B . Y 4 Y <
202531 il v Tl 4 D | /AR P "
N S e (e e e e e I AT S | R S o ——— p——
Sipht_30 Sipht_60 Sipht_100 Sipht_1000 08 1.1 1.5 1808 1.1 1.5 1.80.8 1.1 1.5 1.808 1.I 1.5 1.8
1.O0{e—e——4g——g[g—*—u— — g ([——e ¢
0.754 I—x— =3 - x! —112 —x =g —— & X 1IC-PCP
0.504 PR “« —e—PSO
0251 < DR S e — T —4—NIT-C
0001e—+ ¢ #le & ¢ ¢lo ¢ ¢ eole ¢ ¢ ¢ —— QL-HEFT
08 1.1 1.5 1.80.8 1.1 1.5 1.80.8 1.1 1.5 1.80.8 1.1 1.5 1.8 —<— KADWWO
Deadline Factors —+— ET2FA

Fig. 9. The RPD of Total Idle Rate of each workflow with IC-PCP, PSO, JIT-C, QL-HEFT, KADWWO, and ET2FA.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore.

Restrictions apply.

SUN ETAL.: ET2FA: A HYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD 1819
CyberShake Epigenomics GaussianElimination Inspiral
1.00 - p<0.05 - p<0.05 - p<0.05 - p<0.05
2075
2050 ¥
2025 = = X
= 0.00 - -~ - - = = - -+
g MolecularDynamicsCode Montage Sipht JCP(,PSO I, o OL -t 1(4 DW 7‘2&1
=1.00 - p<0.05 - p<0.05 - - > p<0.05
S 0.75 I Mean £ 95% CI
20.50 = IC-PCP
~0.25 . - * PSO
0.00 + + + e
Ic, pCPSO J1r0 QLH /(4 rgp 1c. pCPSO JITC Q. -t 1(4 rgp pCPSO JITC QLH [(ADW rap 24 v QL-HEFT
KADWWO
Algornhms ¢ ET2FA

Fig. 10. Means plot of RPD of Total Idle Rate with 95.0 percent Tukey HSD confidence intervals.

in advance. It can be seen from Fig. 9 that QL-HEFT is
always close to PSO, and its performance is also poor. The
reason is that when allocating resources, QL-HEFT always
selects resources according to the rule of the earliest comple-
tion time. This rule may turn this problem into a homoge-
neous resource type with only one highest configured VM
type. Although QL-HEFT can’t achieve good performance
for total idle rate, it can perform well for total cost, espe-
cially for Epigenomics and Inspiral workflows.

5.3.3 Running Time of the Algorithms

Table 7 shows the average running time of the algorithm
under different workflow types. Avg is the average running
time of the algorithm based on all workflow types. The time
of ET2FA is always the least, and its average time is only
0.346 seconds. With the increase of the scale of the problem,
the running time does not change significantly. Since PSO
and KADWWO are swarm intelligence algorithms, through
iterative optimization, they are obvious that the running
time of the algorithm is longer than that of the heuristic algo-
rithm. QL-HEFT is also an iterative optimization algorithm

TABLE 7
Average Running Time of Scheduling Algorithms (in Second)

IC-PCP PSO JIT-C QL-HEFT KADWWO ET2FA
Cyber_30 0.054 36.498 0.380 0.655 26.653 0.034
Cyber_50 0.085 61.485 0.998 0.662 61.877 0.059
Cyber_100 0.314 123.247 4121 2.100 127.071 0.128
Cyber_1000 16.305 1219.139 389.530 199.216 1458.821 1.510
Epige 24 0.033 29.238 0.041 0.257 11.698 0.014
Epige 46 0.063 57.286 0.122 2.528 42.893 0.026
Epige_100 0.373 121.802 0.344 2.123 124.906 0.054
Epige_997 8.886 1218.974 25.965 436.005 null 0.562
Gauss_54 null 65.850 0.863 53.767 53.929 0.058
Gauss_209 0.821 254.838 13.483 251.488 255.339 0.262
Gauss_629 null 768.435 150.028 760.295 789.016 0.758
Gauss_1034 null 1268.986 365238 1250.637 1435.058 1.314
Inspi_30 0.039 36.503 0.119 0.231 19.182 0.021
Inspi_50 0.067 60.837 0.272 0.600 51.858 0.033
Inspi_100 0.168 121.688 0.999 3.992 124.277 0.068
Inspir_1000 null 1220.206 84.327 167.148 1432.261 0.829
Molec_0 0.058 50.075 0.660 23.715 31.550 0.046
Molec 1 0.056 50.068 0.660 7.757 31.830 0.046
Molec 2 null 49.891 0.660 16.180 31.992 0.047
Molec_3 null 49.939 0.659 11.955 31.723 0.046
Monta_25 0.030 30.290 0.222 0.217 21.012 0.030
Monta_50 0.086 61.307 0.987 0.885 62.503 0.069
Monta_100 0.281 123.058 4.038 2.095 127.815 0.139
Monta_1000 73.626 1246.531 469.442 187.338 1942.837 2.312
Sipht_30 0.045 35.128 0.296 0.583 35.879 0.028
Sipht_60 0.090 71.047 1.067 0.857 73.640 0.055
Sipht_100 0.167 118.190 2.845 1.918 129.099 0.090
Sipht_1000 13.476 1184.152 277.391 161.450 1811.342 1.064
Avg 5.233 347.667 64.134 126.666 383.187 0.346

by constantly updating Q-table. Although IC-PCP and JIT-C
are heuristic algorithms, there are still some iterations in the
algorithm process. As the problem scale increases, the run-
ning time becomes significantly longer.

When these results are combined, the ET2FA is an effec-
tive and efficient algorithm for workflow scheduling. The
superiority of ET2FA are as follows: 1) ET2FA considers
three special structures in DAG and prioritizes the tasks of
these structures; 2) We devises a guiding VM selection
method based on compact scheduling conditions; 3) We fur-
ther optimizes the scheduling results by utilizing the prop-
erty of block structure.

6 CONCLUSION

In this article, a more realistic workflow scheduling problem
in cloud with hibernation mode and per-second billing with
a minimum of 60 seconds is considered. By analyzing the
characteristics of the problem and the properties of the
block structure, a hybrid heuristic algorithm with three
stages is proposed, which is called Enhanced Task Type Pri-
ority Algorithm (ET2FA). The simulation results and com-
parisons demonstrate that ET2FA outperforms the baseline
algorithms including two heuristic algorithms IC-PCP and
JIT-C, two meta-heuristic algorithms PSO and KADWWO,
and a reinforcement learning algorithm QL-HEFT.

ET2FA outperforms baselines, but it still has the follow-
ing limitations: 1) We ignore the heterogeneous tasks such
as computing-intensive, memory-intensive, network-inten-
sive and GPU-demanding tasks; 2) When the scale of work-
flow becomes very large, ET2FA may not guarantee a
satisfactory solution due to its small search space.

In the future, we intend to further enhance the quality of
the presented method on large/very large-scale workflow
scheduling with energy optimization (e.g., up to 5000 tasks).
In the case of a large-scale tasks, heuristic algorithm is lim-
ited to a small search space, and its solution can still be fur-
ther optimized, so we intend to integrate heuristic algorithm
into meta-heuristic algorithm to obtain the non-dominated
solution set.

REFERENCES

[11 A. Song, W.-N. Chen, X. Luo, Z-H. Zhan, and J]. Zhang,
“Scheduling workflows with composite tasks: A nested particle
swarm optimization approach,” IEEE Trans. Services Comput.,
vol. 15, no. 2, pp. 1074-1088, Mar./ Apr. 2022.

H. Yuan, J. Bi, and M. C. Zhou, “Energy-efficient and QoS-opti-
mized adaptive task scheduling and management in clouds,”
IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2, pp. 1233-1244, Apr.
2022.

[2]

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

1820

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

Z.1i,]. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy
aware scheduling algorithm for scientific workflows with dead-
line constraint in clouds,” IEEE Trans. Services Comput., vol. 11,
no. 4, pp. 713-726, Jul./ Aug. 2018.

M. A.Rodriguez and R. Buyya, “Deadline based resource provision-
ing and scheduling algorithm for scientific workflows on clouds,”
IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 222-235, Apr—Jun. 2014.
Q. Z. Xiao, J. Zhong, L. Feng, L. Luo, and J. Lv, “A cooperative
coevolution hyper-heuristic framework for workflow scheduling
problem,” IEEE Trans. Services Comput., vol. 15, no. 1, pp. 150-163,
Jan./Feb. 2022.

Z. G. Chen et al., “Multiobjective cloud workflow scheduling: A
multiple populations ant colony system approach,” IEEE Trans.
Cybern., vol. 49, no. 8, pp. 2912-2926, Aug. 2019.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274, Mar.
2002.

J. Zhou et al., “Reliability and temperature constrained task sched-
uling for makespan minimization on heterogeneous multi-core
platforms,” J. Syst. Softw., vol. 133, pp. 1-16, 2017.

C.G.Wu, W. Lj, L. Wang, and A. Y. Zomaya, “Hybrid evolutionary
scheduling for energy-efficient fog-enhanced Internet of Things,”
IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 641-653, Apr.—Jun. 2021.
Z.H. Zhan, X. F. Liu, Y.]. Gong, J. Zhang, H. S. H. Chung, and Y.
Li, “Cloud computing resource scheduling and a survey of its
evolutionary approaches,” ACM Comput. Surv., vol. 47, no. 4,
2015, Art. no. 63.

H. Wu, X. Hua, Z. Li, and S. Ren, “Resource and instance hour
minimization for deadline constrained DAG applications using
computer clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3,
pp- 885-899, Mar. 2016.

S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-con-
strained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158-169,
2013.

J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-con-
strained dynamic scheduling algorithm for scientific workflows in
a cloud environment,” IEEE Trans. Cloud Comput., vol. 6, no. 1,
pp- 2-18, Jan.-Mar. 2018.

X. Li, L. Qian, and R. Ruiz, “Cloud workflow scheduling with
deadlines and time slot availability,” IEEE Trans. Services Comput.,
vol. 11, no. 2, pp. 329-340, Mar./ Apr. 2018.

Y. H. Jia et al, “An intelligent cloud workflow scheduling system
with time estimation and adaptive ant colony optimization,” IEEE
Trans. Syst., Man, Cybern. Syst., vol. 51, no. 1, pp. 634-649, Jan. 2021.
Z.Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “QL-HEFT: A novel
machine learning scheduling scheme base on cloud computing envi-
ronment,” Neural Comput. Appl., vol. 32, no. 10, pp. 5553-5570,
2020.

P. K. Muhuri and S. K. Biswas, “Bayesian optimization algorithm
for multi-objective scheduling of time and precedence constrained
tasks in heterogeneous multiprocessor systems,” Appl. Soft Com-
put., vol. 92,2020, Art. no. 106274.

M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on sched-
uling strategies for workflows in cloud environment and emerg-
ing trends,” ACM Comput. Surv., vol. 52, no. 4, 2020, Art. no. 68.
Z.Sun, C. Gu, H. Huang, and H. Zhang, “T2FA: A heuristic algo-
rithm for deadline-constrained workflow scheduling in cloud
with multicore resource,” in Proc. IEEE 14th Int. Conf. Cloud
Comput., 2021, pp. 345-354.

E.-K. Byun, Y.-S. Kee,].-5. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,”
Future Gener. Comput. Syst., vol. 27, no. 8, pp. 1011-1026, 2011.

S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A hybrid Bio-
inspired algorithm for scheduling and resource management in
cloud environment,” IEEE Trans. Services Comput., vol. 13, no. 1,
pp- 3-15, Jan./Feb. 2020.

S. Qin, D. Pi, Z. Shao, and Y. Xu, “A knowledge-based adaptive dis-
crete water wave optimization for solving cloud workflow sched-
uling,” IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2021.3087642.

A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: A deadline-
constrained workflow scheduling algorithm for multicore resources
on the cloud,” J. Supercomput., vol. 73, no. 2, pp. 756-781, 2017.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Z. Zhu and X. Tang, “Deadline-constrained workflow scheduling
in laaS clouds with multi-resource packing,” Future Gener. Com-
put. Syst., vol. 101, pp. 880-893, 2019.

X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing
cost and makespan for workflow scheduling in cloud using fuzzy
dominance sort based HEFT,” Future Gener. Comput. Syst., vol. 93,
pp- 278-289, 2019.

R. K. Naha and M. Othman, “Cost-aware service brokering and
performance sentient load balancing algorithms in the cloud,” J.
Netw. Comput. Appl., vol. 75, pp. 47-57, 2016.

R. Sudarsan and C.]. Ribbens, “Combining performance and
priority for scheduling resizable parallel applications,” . Parallel
Distrib. Comput., vol. 87, pp. 55-66, 2016.

Z.]. Wang et al.,, “Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its applica-
tion in cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50,
no. 6, pp. 2715-2729, Jun. 2020.

Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, and J. Wen, “Deadline-con-
strained cost optimization approaches for workflow scheduling in
clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 12, pp. 3401-
3412, Dec. 2017.

M. S. Sanaj and P. M. JoePrathap, “Nature inspired chaotic squir-
rel search algorithm (CSSA) for multi objective task scheduling in
an IAAS cloud computing atmosphere,” Eng. Sci. Technol., vol. 23,
no. 4, pp. 891-902, 2020.

H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and M. S. Arantes,
“Genetic-based algorithms applied to a workflow scheduling
algorithm with security and deadline constraints in clouds,”
Comput. Electr. Eng., vol. 69, pp. 378-394, 2018.

D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning
based dynamic task scheduling for energy-efficient cloud computing,”
Future Gener. Comput. Syst., vol. 108, pp. 361-371, 2020.

G. Ismayilov and H. R. Topcuoglu, “Neural network based multi-
objective evolutionary algorithm for dynamic workflow schedul-
ing in cloud computing,” Future Gener. Comput. Syst., vol. 102,
pp- 307-322, 2020.

Z.Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344-1357, May 2016.

Q. Wu, M. C. Zhou, and J. Wen, “Endpoint communication con-
tention-aware cloud workflow scheduling,” IEEE Trans. Autom.
Sci. Eng., vol. 19, no. 2, pp. 1137-1150, Apr. 2022.

S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of EC2 cloud computing serv-
ices for scientific computing,” in Pro. Int. Conf. Cloud Comput.,
2010, pp. 115-131.

M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud
Comput., 2012, pp. 423-430.

J.Hao, T. Jiang, W. Wang, and I. K. Kim, “An empirical analysis of
VM startup times in public laaS clouds,” in Proc. IEEE 14th Int.
Conf. Cloud Comput., 2021, pp. 398—403.

G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and profiling scientific workflows,” Future
Gener. Comput. Syst., vol. 29, no. 3, pp. 682-692, 2013.

J. Zhou, J. Sun, M. Zhang, and Y. Ma, “Dependable scheduling for
real-time workflows on cyber-physical cloud systems,” IEEE
Trans. Ind. Informat., vol. 17, no. 11, pp. 7820-7829, Nov. 2021.

L. Chen, X. Li, Y. Guo, and R. Ruiz, “Hybrid resource provision-
ing for cloud workflows with malleable and rigid tasks,” IEEE
Trans. Cloud Comput., vol. 9, no. 3, pp. 1089-1102, Jul.—Sep. 2021.

J. Wang, X. Li, R. Ruiz, J. Yang, and D. Chu, “Energy utilization
task scheduling for MapReduce in heterogeneous clusters,” IEEE
Trans. Services Comput., vol. 15, no. 2, pp. 931-944, Mar./ Apr. 2022.

Zaixing Sun received the MS degree in control
engineering from the Kunming University of Sci-
ence and Technology, Kunming, China, in 2019.
Currently, he is working toward the PhD degree
with the Harbin Institute of Technology, Shenzhen,
China. His research interests include cloud
computing, intelligent optimization, and scheduling.

http://dx.doi.org/10.1109/TCC.2021.3087642
http://dx.doi.org/10.1109/TCC.2021.3087642

Boyu Zhang is currently working toward the
undergraduate degree with the School of Artificial
Intelligence, Changchun University of Science
and Technology, Changchun, China. His research
interests include algorithm design in cloud com-
puting, privacy-preserving technology in cloud
computing, etc.

Chonglin Gu received the PhD degree in com-
puter science and technology from the Harbin Insti-
tute of Technology, Shenzhen, in 2018. After that,
he has been a postdoctoral fellow with the Chinese
University of Hong Kong, Shenzhen, China. He is
currently an assistant professor with the School of
Computer Science and Technology, Harbin Insti-
tute of Technology, Shenzhen. His research inter-
ests include cloud computing, especially algorithm
design, and system implementation.

Ruitao Xie received the BEng degree from the
Beijing University of Posts and Telecommunica-
tions, in 2008, and the PhD degree in computer
science from the City University of Hong Kong, in
2014. She is currently an assistant professor with
the College of Computer Science and Software
Engineering, Shenzhen University. Her research
interests include edge computing, Al networking,
cloud computing, and distributed systems.

SUN ETAL.: ET2FA: AHYBRID HEURISTIC ALGORITHM FOR DEADLINE-CONSTRAINED WORKFLOW SCHEDULING IN CLOUD 1821

Bin Qian received the PhD degree in control sci-
ence and engineering from Tsinghua University,
Beijing, China, in 2009. From 2018 to 2019, he
was a visiting professor with Manchester Busi-
ness School, University of Manchester, Manches-
ter, UK. He is currently a professor with the
School of Information Engineering and Automa-
tion, Kunming University of Science and Technol-
ogy. His research interests include intelligent
optimization and scheduling.

Hejiao Huang received the PhD degree in com-
puter science from the City University of Hong
Kong, in 2004. She is currently a professor with the
Harbin Institute of Technology, Shenzhen, China,
and previously was an invited professor with INRIA,
France. Her research interests include network
security, cloud computing security, trustworthy
computing, big data security, formal methods for
system design, and wireless networks.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on July 26,2023 at 23:37:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

