
An Energy-Efficient Scheduling Method
for Real-Time Multi-workflow

in Container Cloud

Zaixing Sun, Zhikai Li, Chonglin Gu(B), and Hejiao Huang

School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, China

guchonglin@hit.edu.cn

Abstract. Cloud computing has a powerful ability to handle a large
number of tasks. Correspondingly, it also consumes a lot of energy.
Reducing the energy consumption of cloud service platforms while ensur-
ing the quality of service has become a crucial issue. In this paper,
we propose a heuristic energy-saving scheduling algorithm named Real-
time Multi-workflow Energy-efficient Scheduling (RMES) with the aim
to minimize the total energy consumption in container cloud. RMES exe-
cutes tasks as parallel as possible to enhance the resource utilization of
the running machines in cluster, therefore reducing the time of the global
process, saving energy as a result. RMES takes advantage of the affinity
between containers and machines to meet the resource quantity and per-
formance requirements of containers during scheduling. In order to follow
the change of the system state overtime, we introduce the re-scheduling
mechanism, which can automatically adjust the scheduling decisions of
the tasks that have not yet been executed in the scheduling scheme. The
experimental results show that RMES has obvious advantages over other
scheduling algorithms in terms of energy consumption and success ratio.

Keywords: Multi-workflow scheduling · Real time · Container cloud ·
Energy minimization

1 Introduction

Cloud service platform (CSP) have powerful ability to handle large-scale scien-
tific applications. These applications are submitted to CSP in real time in the
form of workflow. The different users’ workflow requests with various structures
are mixed into a multi-workflow for CSP to process. Each workflow has its Qual-
ity of Service (QoS, such as deadline) needs. Different workflows consist of tasks
with various resource requirements. CSP provides consumers with on-demand
compute and storage resources [2]. Container, a new virtualization technique, is
better suited for this multi-workflow scenario than classic virtualization technol-
ogy [14]. It has three advantages including less memory, faster startup speed and
lower management overhead [17]. In container cloud, users can specify the affinity
between containers for applications, which facilitates the container orchestration
on clusters [11], such that the special resource requirements of the tasks can be
met.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 168–181, 2024.
https://doi.org/10.1007/978-3-031-49611-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49611-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-49611-0_12

An Energy-Efficient Scheduling Method 169

CSP has a large number of physical machines, which consume massive energy.
Data centres are reported [6] to spend around $13 billion a year on electricity.
Massive energy usage not only increases the expense of the data center, but also
causes some damage to the environment. However, the main challenge is that we
should not only minimize the energy consumption of cloud service center, but
also ensure all the tasks to be completed on time. At present, many researches
have focused on the scheduling algorithm to reduce energy consumption in data
centers. In [12,15], the authors proposed energy-saving scheduling algorithms on
the traditional cloud. Since the complex affinity relationship between containers
and physical machines brings more constraints to energy-saving scheduling deci-
sions, these methods can not be directly used in container cloud scenarios. In [8],
an energy-saving scheduling algorithm based on Q-Learning is proposed. How-
ever, the algorithm does not consider the dependencies between tasks. The work-
flow scheduling problem is an NP-hard problem [16]. These algorithms require
a lot of computation to make decisions, which may not be suitable for real-time
scheduling scenarios that require rapid response.

The heuristic method is to set some scheduling rules to make the task
scheduling results on the cluster reach an approximately optimal state. Heuris-
tic approaches are faster than other methods at producing scheduling decisions
because they are based on empirical design rules. Therefore, this method is more
suitable for real-time scheduling scenarios. In [9], principles from generational
garbage collection (GC) reduce energy consumption in homogeneous clusters and
ensure that all requests do not violate deadline constraints as much as possible.
In [10], the authors adjust the task scheduling decision by balancing energy con-
sumption and task execution time in the real-time scenario. However, the above
methods either do not consider the real-time constraints, or ignore some special
conditions of resource constraints in container cloud, such as their affinity.

In view of the above shortcomings, we propose a real-time multi-workflow
energy-efficient scheduling (RMES) algorithm to solve real-time multi-workflow
scheduling. The objective is to minimize the energy consumption of the cluster
while completing as many workflows on time as possible. The main contributions
of this paper are as follows:

– We build a real-time multi-workflow scheduling model on heterogeneous clus-
ters considering the affinity constraints between tasks and machines.

– We propose a heuristic scheduling algorithm called RMES, which decreases
the base energy consumption of cluster by compressing the time of the global
process through executing tasks in parallel.

– RMES evaluates the current running status of the physical machines in clus-
ter, and shuts down the physical machines with low utilization in time, thus
reducing unnecessary energy consumption of the cluster.

– The performance of scheduling algorithm is verified by using workflow in
the real world. Compared with the existing algorithms, RMES reduces more
energy consumption for CSP while meeting the affinity constrains between
container and physical machine.

The rest of this paper is organized as follows. Section 2 introduces the real-
time multi-workflow scheduling and energy consumption model. In Sect. 3, a

170 Z. Sun et al.

heuristic energy-saving scheduling algorithm is proposed. Section 4 presents the
experimentation and evaluation. Finally, Sect. 5 concludes the paper.

2 Problem Formulation

2.1 Workflow Modeling

In cloud, the system needs to schedule the workflow applications submitted
dynamically by users in real time. These workflows are composed of many
requests which can be denoted as W = {w1, w2, ..., wm}. A single request can be
described as a directed acyclic graph (DAG). We model a request wm ∈ W as
wm = {wat

m , wtrt
m , wd

m, Gm}, where wat
m , wtrt

m , wd
m and Gm represent the arrival

time, tolerable running time (the maximum time a user can tolerate for a request
to be execute), deadline and structure of wm, respectively. wd

m can be calculated
as wd

m = wat
m + wtrt

m . Gm = (Tm, Em), where Tm is the set of tasks and Em

represents the dependency between tasks. Tm = {tm1, tm2, · · · , tm|Tm|}, where
Tmi(0 < i ≤ |Tm|) represents the ith task of wm and |Tm| is the total number of
tasks contained in wm. Em is the 0–1 matrix of Tm × Tm. emu,v = 1 means that
there is a data dependence between tmu and tmv, where tmu is the immediate pre-
decessor of tmv. For the tmi, we further model it as tmi = {tImi, t

image
mi , ttypemi , tmid}.

tImi is the number of instructions contained in tmi; timage
mi is the image of con-

tainer executing tmi; ttypemi is the tmi’s type; tdmi is the sub-deadline of tmi.
A task is executed within a container and then deployed on physical machine

(PM). Container bundles the software configuration of a specific workflow into
a container image and is the smallest execution unit in the resource scheduling
system. We model container cj as cj = {ctypej , ccpuj , cmem

j , ccachej , ctaintsj }, where
cj ∈ C (0 < j ≤ |C|). C is the set of all containers in the cluster. ctypej is the
type of task that container cj runs; ccpuj is the number of CPU cores required
by container cj ; cmem

j is memory size required by container cj ; ccachej is the set
of tasks that have been assigned to container cj ; ctaintsj is taint nodes (the set
of PMs that cannot run container cj).

Since a single container can only process one task at a time, the tasks in the
cache can be divided into two types: waiting and executing. The taint node is a
set of PMs that cannot run the container. This set is defined by the user. The
reasons why a PM cannot run the container include that there are no specific
devices required by the container, the performance of some devices cannot meet
the minimum requirements for container operation, and so on. There is a one-
to-one correspondence between containers and tasks. The same type container
can only run the same type task, and tasks of the same type can only run on the
same type of container. A container is created based on the images contained in
the corresponding task.

2.2 Service Instance Modeling

A cloud service provider can provide a variety of cloud service instances, such as
virtual machines and PMs. In this paper, we only consider the case of PM P =

An Energy-Efficient Scheduling Method 171

{p1, p2, . . . , p|P|}. We use pk(0 < k ≤ |P|) to represent the kth PM and P is the
set of PMs in this CSP. We model a PM as pk = {pt cpu

k , pt mem
k , pt̄,u cpu

k , pt̄,u mem
k ,

pck, p
e total
k , pe base

k , pipsk }. pt cpu
k is the Number of CPU cores of the pk; pt mem

k is
the memory resources of the pk; pt̄,u cpu

k is the Number of CPU cores used in pk

at t̄ moment; pt̄,u mem
k is the memory resources used in pk at t̄ moment; pck is

the container set which contains container runs in pk; pe total
k is the power of full

load operation of pk; pe base
k is the basic power of no-load operation of pk; pipsk

is the number of instructions that a single core of pk can process per second.
pt̄,u cpu
k , pt̄,u mem

k can be calculate by Eqs.(1–2), where xt̄
j,k ∈ {0, 1}, xt̄

j,k = 1
means that the container cj is running in pk at t̄ moment.

pt̄,u cpu
k =

∑

cj∈C
xt̄
j,kc

cpu
j , (1)

pt̄,u mem
k =

∑

cj∈C
xt̄
j,kc

mem
j , (2)

Based on the model widely used [4,8] in cloud computing energy analysis, we
model the relationship between the power of the pk and the CPU utilization at
t̄ moment by Eq. (3), where Pt̄

k represent the power of pk at t̄ moment.

Pt̄
k =

⎧
⎨

⎩
0, pk is off,
pt̄,u cpu
k

pt cpu
k

(pe total
k − pe base

k) + pe base
k , pk is on.

(3)

2.3 Workflow Scheduling Model

In this paper, workflow scheduling aims to minimize the total energy consump-
tion for executing workflows. The total energy consumption for a CSP can be
expressed by Eq. (4), where T is total running time of the system.

E =
T∑

t̄=0

|P|∑

k=1

Pt̄,
k , (4)

Task Dependency Constraints. Due to the dependency between tasks, all tasks
can be executed only when their predecessors are completed or there are no
predecessors. tEST

mu and tFT
mv mean earliest start time of tmu and finish time of

tmv, respectively. Pred(tmu) is a set of immediate predecessors of tmu, where
Pred(tmu) = {tmv|emv,u = 1,∀ tmv ∈ Tm}.

max
tmv∈Pred(tmu)

tFT
mv ≤ tEST

mu , (5)

Task Completion Time Constraint. When the system makes scheduling deci-
sions, we should ensure that the real-time tasks submitted by users can be com-
pleted on time.

max
tmv∈Tm

tFT
mv ≤ wd

m. (6)

172 Z. Sun et al.

Fig. 1. Schedule System

Task and Container Placement Constraint. A task can only be deployed on
a single container, and its type should be the same as the task type that the
container can handle. In Eq. (7), yt̄

mi,j ∈ {0, 1} and yt̄
mi,j = 1 means tmi is

deployed on cj , otherwise we set yt̄
mi,j to 0. When we deploy containers on PMs,

we need to meet some resource level constraints. Equation (9) and Eq. (10) mean
the resources occupied by the deployed container on the PM cannot exceed the
total resources of the PM. Equation (11) means a container can only be deployed
on one PM and this PM can’t be taint node of cj .

|C|∑

j=1

yt̄
mi,j = 1. (7)

ttypemi = ctypej , yt̄
mi,j = 1. (8)

∑

cj∈C
xt̄
j,kc

cpu
j ≤ pt cpu

k , (9)

∑

cj∈C
xt̄
j,kc

men
j ≤ pt mem

k , (10)

|C|∑

j=1

xt̄
j,k = 1, pk /∈ ctaintsj . (11)

An Energy-Efficient Scheduling Method 173

3 Real-Time Multi-workflow Energy-Efficient Scheduling
Algorithm

3.1 Scheduling Architecture

The real-time multi-workflow scheduling architecture is shown in Fig. 1. The
architecture can be divided into three parts: end user, instance cluster and sched-
uler. End users can submit workflow requests to the system at any time. The
cloud service platform provides instance clusters to handle the requests submit-
ted by users. The scheduler is to arrange the workflow submitted by users into
the instance cluster reasonably, so that the whole system can operate efficiently.
Schedulers are mainly divided into several components: request preprocessor,
task pool, rescheduling trigger, scheduling decision maker, executor and monitor.
After the workflow request is accepted by the scheduler, the request preproces-
sor first decomposes the workflow submitted by the user into tasks and sets the
deadline and priority for each task. These tasks will be placed in the task pool
(Step 1). The rescheduling trigger will receive the status in the task pool (Step 2)
and inform the scheduling decision-maker whether to perform general scheduling
or rescheduling (Step 3). After receiving instructions, the scheduler extracts the
task information (Step 4) to be dispatched from the task pool and sends the
generated scheduling decisions to the executor (Step 5). During the execution
period, adjust the running state of the instance cluster according to the received
instructions (Step 6). The monitor will constantly monitor the status of cluster
(Step 7) and update the information in the task pool (Step 8).

3.2 Request Preprocessor

This component sets the sub-deadline for the tasks contained in the request
submitted by the user, and sorts them according to the priority. The sub-deadline
setting of each task is related to the topology level of the task in request. The
topological level of a tmi is defined as Eq. (12). For each level, we calculate the
task with the largest number of instructions in the level as the critical task of
the level. We take the duration of the task on the fastest machine in the system
as the execution time of this level (leveltime

l).

Lev(tmi) =

⎧
⎨

⎩
1, P red(tmi) = ∅

max
tmj∈Pred(tmi)

Lev(tmj) + 1, other. (12)

Leveltl = {tmi|Lev(tmi) = l)} (13)

leveltime
l =cloadj +

t̂l
p̂ips · ccpuj

, ctypej = t̂typel , p̂=arg max
pk∈P

(pipsk), t̂l= arg max
tmi∈Leveltl

(tImi),

(14)
where t̂l, p̂ and cloadj represent the task with maximum number of instructions in
level l, the fastest single core PM and the preparation time before the container is

174 Z. Sun et al.

able to handle tasks after deploying, respectively. The estimated processing time
for wm can be model as Eq. (15), where L denotes the maximum level contained
in the wm. After that, we can set the sub-deadline of tmi as Eq. (16).

wet
m =

L∑

l=1

leveltime
l , (15)

tdmi =
leveltime

l

wet
m

· wtrt
m + wat

m , Lev(tmi). (16)

Our priority ranking of tasks is mainly calculated according to the number
of subsequent tasks related to the task which include all immediate and mediate
successors. We defined d(tmu) as the set of tasks which are dependent on tmu.

d(tmu) = (
⋃

tmv∈Sub(tmu)

d(tmv)) ∪ tmu, (17)

Rank(tmu) = |d(tmu)|, (18)
Sub(tmv) = {tmu|emu,v = 1,∀ tmu ∈ Tm} represents the set of immediate suc-
cessors of tmv. A task with higher rank means the task has higher scheduling
priority than other tasks at the same topology level.

3.3 Task Pool

Task pool is a mapping of task states in the system. In the cluster, tasks are
mainly divided into the following types: Task not ready: Tasks whose predeces-
sors have not been completed and have not entered the executable state; Task
ready: Tasks whose predecessors have completed but are not scheduled by the
system; Task scheduled: Tasks that have been scheduled to the container but
have not started to execute; Task running: Tasks being processed by the con-
tainer; Task finished: Tasks that have been completed on time; Task fail: Tasks
that have timed out.

3.4 Re-scheduling Trigger

In most scheduling strategies, the system only schedules tasks once, which often
falls into local optimization in real-time scenarios. In the real-time system, the
request will arrive at the cloud platform at any time, thus the state of the task
in the system will fluctuate with time. For tasks that have been scheduled before
but the container has not started to execute, there may be a better scheduling
decision in the current new system state. However, if every new task arrives,
rescheduling all the tasks in the system will greatly increase the scheduling cost
of the system and affect the quality of service. To trade off this decision, we
use θt = |Newtaskt|

|Alltaskt| to describe the state of unprocessed tasks in the system at
t moment. Newtaskt represents the set of new executable tasks at t moment
and Alltaskt represents the set of tasks that can be executed but not started.
|Newtaskt| and |Alltaskt| mean the number of elements in corresponding set. α
is re-schedule factor, (0 < α < 1). If θt > α, this means that the task state in the
system has changed greatly, and rescheduling decision will be a better choice.

An Energy-Efficient Scheduling Method 175

3.5 Scheduling Decision-Maker

After the above stages, the system has completed the screening and sorting of
the tasks to be scheduled. We will schedule all tasks once according to the pri-
ority of the tasks. The selection of target container and machine should consider
the scheme with the lowest energy consumption as far as possible on the basis
of ensuring that the task can be completed on time, and also consider the uni-
versality of the machine. If too many containers are deployed on a machine with
higher versatility (the machine is used as taint with fewer tasks), more picky
tasks (tasks with many Taints) may not have enough resources to deploy in
the cluster. Therefore, the selection of scheduling objectives should be compre-
hensively determined by weighing the new energy consumption caused by the
deployment of the machine and the universality of the target machine.

The calculation of new energy consumption after deployment can be divided
into the following situations: A: There is a deployed container, and the running
time of the container after deployment will not exceed the maximum running
time of the container deployed on the PM to which the container is deployed.
B: There is a deployed container, and the running time of the container after
deployment will exceed the maximum running time of the container deployed
on the PM to which the container is deployed. C: A new container needs to be
deployed on the PM that has been powered on, and the running time of the
PM will not be extended. D: A new container needs to be deployed on the PM
that has been powered on, which will cause the increment of running time of the
PM. E : Need to open a new PM to deploy the container. F : The cluster does
not have enough resources to complete the task on time. Considering the above
situations, the new energy consumption caused by the deployment tasks can be
calculated by Eq. (19).

ΔE =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ccpuj

pcpu
k

· (pe total
k − pe base

k) · t̄r, A
ccpuj

pcpu
k

· (pe total
k − pe base

k) · t̄r + t̄e · pe base
k , B

ccpuj

pcpu
k

· (pe total
k − pe base

k) · (t̄r + t̄p), C
ccpuj

pcpu
k

· (pe total
k − pe base

k) · (t̄r + t̄p) + t̄e · pe base
k , D

ccpuj

pcpu
k

· (pe total
k − pe base

k) · (t̄r + t̄p) + (t̄r + t̄p + t̄s) · pe base
k , E

(19)

tr =
tImi

pipsk · ccpuj

, (20)

where cj , pk are the container and PM for task tmi plan to deployment, respec-
tively. t̄r, t̄e, t̄p and t̄s are task execution time, extended execution time of PM,
start time of container and start time of PM. For each PM in the platform, the
system calculates the universality of each PM (puk , (21)) according to the taints
node information submitted by the user. Cavail is a set of containers that can be
deployed to pk. The higher puk means that pk has higher versatility.

puk =
|Cavail|

|C| , (21)

176 Z. Sun et al.

In order to meet the scheduling objectives, the system needs to allocate tasks
to lower energy consumption and more “exclusive” PMs. Qi,j,k ∈ Q is calculated
by Eq. (22), which denote the energy consumption of deploying ti to container
cj and PM pk. The system will deploy the task with a higher Q scheme.

Qi,j,k = βΔEi,j,k + (1 − β)puk , (22)

where β is the weight of energy consumption in scheduling decision, (0 < β < 1).
The detailed pseudocode of the our algorithm can be found in AppendixA.

4 Performance Evaluation

4.1 Experimental Setup

We use five well-known workflows widely used in previous work to evaluate the
algorithm: Montage, LIGO, Epigenomics, CyberShake and SIPHT1. Montage is
I/O intensive, LIGO and CyberShake are CPU intensive containing task with
high memory requirements. Epigenomics and SIPHT are CPU intensive. Details
of these workflows are described in [13]. Similar to [7], we use the rule that
the arrival interval of any two requests in the actual scenario obeys the Poisson
distribution to generate a real-time workflow.

We establish a simulation platform in Python which generates the request
workflow according DAX format file. The platform runs on a Ubuntu 20.04.2
LTS a 64bit PC with i5-9500 3.0 GHz CPU and 32 GB RAM, python 3.8.5.
In the experiment, we use eight types of PMs (see Table 1.), and the relevant
configuration parameters of these PMs are obtained by [1]. We set re-schedule
factor α to 0.05. We set wmin

m as the time it takes for the longest critical path
in the workflow to run on the fastest machine in the cluster. We select deadline
factor γ according to the uniform distribution [2, 8] and then assign the deadline
calculated by γ · wmin

m to workflows.

Table 1. Real-world PM types

Type CPU cores Mem (GB) basic power (w) full load power (w)

PM1 4 4 43 115

PM2 4 8 63 115

PM3 8 8 89.4 173

PM4 8 16 155 269

PM5 8 18 173 334

PM6 8 32 226 294

PM7 16 16 299 521

PM8 32 32 260 748

1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

An Energy-Efficient Scheduling Method 177

We constructed five homogeneous scenarios (with only one workflow type)
and one heterogeneous scenario (with all workflow types) using the above work-
flows. In each scenario, the experimental parameters are composed of three
parameters, including arrival rate λ, workflow scale scale and compatibility δ.
Similar to previous works [3,7], λ includes the arrival rate of four poisson dis-
tribution of 1 workflows/s, 5 workflows/s, 10 workflows/s and 15 workflows/s.
Workflow scale represents the workflow intensity of three requests, small, medium
and large. They are composed of a mixture of multiple workflows with a total
of 1000, 2000 and 3000 tasks. The workflow contains more tasks, if it is in large
workflow scale. We set compatibility to 0.2, which represent 20% of the PMs in
the cluster as taints of the task. This represents the degree to which the task
is picky about the PMs in the cloud service provider cluster. For each workflow
structure, we conducted experiments on the different values of the above three
parameters, and a total of 24 groups of experiments were conducted.

Fig. 2. The energy consumption of each workflow with DWS, ROSA, Round-Robin,
Random and RMES

4.2 Comparison Algorithm

To verify the effectiveness of our proposed algorithm, we compare it with four
existing algorithms: Random and Round-Robin, ROSA [5] and DWS [3]. Ran-
dom is a random scheduling strategy. After disassembling the arriving workflow
into sub tasks, the system randomly assigns the tasks to the container and
schedules the container to run on the random machine. Round-Robin is one of
the default scheduling strategies of Kubernetes. The algorithm schedules tasks
to appropriate containers and PMs according to the polling rules. ROSA is an
uncertainty-aware online scheduling algorithm to schedule dynamic and multiple
workflows with deadlines. The algorithm first estimates the completion time of
the task, and then schedules the task to minimize the cost. DWS is an online
heuristic algorithm, which aims to minimize the cost of renting service instances
under the deadline. When the new workflow arrives, the system sets heuristic
rules according to the cost deadline to schedule the task to a more reasonable

178 Z. Sun et al.

instance. To ensure the fairness of the experiment, we equivalently replace the
optimization objective function in ROSA and DWS with the same energy con-
sumption objective function as RMES.

4.3 Simulation Results

Arrival Rate. Figure 2 shows the energy consumption result of the algorithms
under different workflow structures. The arrival rate is increased from 1 to 15 in
the case of medium workflow scale. We can see that in most cases, the experi-
mental results of RMES are excellent, which is significantly improved compared
with other algorithms. When the arrival rate increases, our algorithm performs
better. When the arrival rate is 1, our algorithm improves -1%, -10%, 18.45% and
34.11% respectively compared with DWS, ROSA, Random and Round-Robin.
When arrival rate reaches 15, RMES increases to 40.57%, 19.42%, 27.89% and
39.40%. With the increasing arrival rate, the proportion of newly arrived tasks
in the task pool will increase, resulting in large changes in the status of the task
pool. Due to the setting of rescheduling mechanism in RMES, when the state of
task pool changes greatly, the scheduler can reschedule the unexecuted tasks in
the system in time, so that the scheduling results of tasks in the task pool are
more in line with the current state of task pool.

Table 2. The energy consumption of each workflow with DWS, ROSA, Round-Robin,
Random and RMES

Workflow, size Random Round-robin DWS ROSA RMES

Montage, S 0.47 0.79 0.64 0.52 0.37

Montage, M 0.83 1.10 1.06 0.73 0.55

Montage, L 1.62 1.77 1.72 1.17 1.22

LIGO, S 13.12 18.96 9.95 9.16 9.64

LIGO, M 19.86 22.81 21.68 14.71 11.98

LIGO, L 23.17 24.69 27.85 19.74 17.46

CyberShake, S 0.85 0.95 0.80 0.75 0.67

CyberShake, M 1.51 2.55 1.84 1.25 0.94

CyberShake, L 1.85 2.44 2.17 1.60 1.30

Epigenomics, S 208.48 205.63 216.23 216.22 206.24

Epigenomics, M 141.98 144.15 145.72 147.13 146.19

Epigenomics, L 163.81 162.89 160.84 172.21 162.00

SIPHT, S 12.92 13.14 17.49 12.08 11.18

SIPHT, M 13.09 15.20 12.37 10.02 10.08

SIPHT, L 30.89 46.99 44.93 28.90 23.99

multi, S 6.21 8.06 6.01 4.44 3.86

multi, M 10.95 13.91 10.85 10.95 5.51

multi, L 27.49 34.94 24.80 17.12 12.44

An Energy-Efficient Scheduling Method 179

Workflow Scale. Table 2 shows the energy consumption result of the algorithm
under different sizes and different workflow structures when the arrival rate is
10 workflows/s. In Table 2, ’Montage, S’ means Montage workflow small-scale
test example. In addition to the two workflow structures with fluctuating com-
pletion rates, RMES has obvious advantages over other algorithms. Under the
three workflow structures of multi, SIPHT and CyberShake, the improvement of
RMES and the comparison algorithm with the best performance increases from
13.06%, 7.45% and 10.66% on a small scale to 27.33%, 16.98% and 18.75% on a
large scale. We find that RMES algorithm has a greater improvement under the
condition of large-scale workflow.

5 Conclusion

In this paper, we focus on the real-time energy-saving multi-workflow schedul-
ing on container cloud. Firstly, we establish a cloud-based workflow scheduling
model, which considers resource quantity and performance constraints of con-
tainer deployment. Then we propose an real-time multi-workflow energy-efficient
scheduling (RMES) algorithm. By executing tasks in parallel on the running PM,
RMES can compress the time of the global process to reduce the base energy
consumption. Furthermore, RMES introduces rescheduling mechanism, so that
the task scheduling decision can be adjusted with the change of system state.
Finally, we conduct several groups of experiments under the actual workflow
conditions. Compared with other algorithms, RMES significantly reduces the
energy consumption generated by CSP.

Acknowledgements. This work is supported by the Shenzhen Science and
Technology Program under Grant No. GXWD20220817124827001, and No.
JCYJ20210324132406016.

Appendix for “An Energy-Efficient Scheduling Method for
Real-Time Multi-workflow in Container Cloud”

A Detailed Pseudocode of the Proposed Algorithm

The detailed procedure is given in Algorithm1. taskready and taskscheduled repre-
sent task sets of type task ready and task scheduled in the task pool, respectively.
<Qn,i,j , ci, pj> means assign taskn to ci running in pj . Firstly, we evaluate the
task state in the system and judge whether to reschedule the scheduled tasks
according to the current task state of the system, as shown in lines 2–10 of
Algorithm 1. Then, for the task to be scheduled, the system calculates the Q
value of the task deployed on the existing container, and deploys the task to the
container with the lowest Q value, as shown in lines 11–24 of Algorithm1. For a
task without a suitable container to run, the system will create a new container
for it, calculate the Q value of the container deployed to each PM in the cluster,
and select the PM with the lowest Q value to run the container, as shown in
lines 25–41 of Algorithm 1.

180 Z. Sun et al.

Algorithm 1: RMES
Input: taskready, taskscheduled, C,P
Output: {xn,j} ,{yi,j}

1 scheduletask ← ∅;
2 Calculate θt;
3 if θt > α then
4 foreach tn ∈ taskscheduled do
5 scheduletask ← scheduletask ∪ {tn};
6 end
7 end
8 foreach tn ∈ taskready do
9 scheduletask ← scheduletask ∪ {tn};

10 end
11 foreach tn ∈ scheduletask do
12 target ← ∅;
13 foreach ci ∈ C do
14 if ctypei = tasktype

n then
15 Calculate Qn,i,j according Eq. (22);
16 target ←< Qn,i,j , ci, pj >;
17 end
18 end
19 if target �= ∅ then
20 select ci with minimum Q;
21 xn,j ← 1;
22 scheduletask ← scheduletask − {taskn};
23 end
24 end
25 if scheduletask �= ∅ then
26 foreach tn ∈ scheduletask do
27 target ← ∅;
28 create container ci;
29 foreach pmj ∈ P do
30 Calculate Qn,i,j according Eq. (22);
31 target ←< Qn,i,j , ci, pj >;
32 end
33 if target �= ∅ then
34 select ci with minimum Q;
35 xn,j ← 1;
36 yi,j ← 1;
37 scheduletask ← scheduletask − {taskn};
38 C ← C ∪ {ci};
39 end
40 end
41 end

An Energy-Efficient Scheduling Method 181

References

1. Third quarter 2021 specpower ssj2008 results (2021). www.spec.org/power
ssj2008/results/res2021q3/

2. Al-Dulaimy, A., Taheri, J., Kassler, A., HoseinyFarahabady, M.R., Deng, S.,
Zomaya, A.: Multiscaler: a multi-loop auto-scaling approach for cloud-based appli-
cations. IEEE Trans. Cloud Comput. 10(4), 2769–2786 (2022)

3. Arabnejad, V., Bubendorfer, K., Ng, B.: Dynamic multi-workflow scheduling: a
deadline and cost-aware approach for commercial clouds. Futur. Gener. Comput.
Syst. 100, 98–108 (2019)

4. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of
energy-efficient data centers and cloud computing systems. In: Advances in Com-
puters, vol. 82, pp. 47–111 (2011)

5. Chen, H., Zhu, X., Liu, G., Pedrycz, W.: Uncertainty-aware online scheduling
for real-time workflows in cloud service environment. IEEE Trans. Serv. Comput.
14(4), 1167–1178 (2018)

6. Cheng, M., Li, J., Nazarian, S.: DRL-cloud: deep reinforcement learning-based
resource provisioning and task scheduling for cloud service providers. In: 2018
23rd Asia and South Pacific Design Automation Conference, pp. 129–134 (2018)

7. Deng, F., Lai, M., Geng, J.: Multi-workflow scheduling based on genetic algorithm.
In: 2019 IEEE 4th International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA), pp. 300–305. IEEE (2019)

8. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.: Q-learning based dynamic
task scheduling for energy-efficient cloud computing. Futur. Gener. Comput. Syst.
108, 361–371 (2020)

9. Havet, A., Schiavoni, V., Felber, P., Colmant, M., Rouvoy, R., Fetzer, C.: Gen-
pack: a generational scheduler for cloud data centers. In: 2017 IEEE International
Conference on Cloud Engineering (IC2E), pp. 95–104 (2017)

10. Hu, B., Cao, Z., Zhou, M.: Scheduling real-time parallel applications in cloud to
minimize energy consumption. IEEE Trans. Cloud Comput. 10(1), 662–674 (2022)

11. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints. Futur. Gener. Comput. Syst.
102, 562–573 (2020)

12. Hussain, M., Wei, L.F., Lakhan, A., Wali, S., Ali, S., Hussain, A.: Energy and
performance-efficient task scheduling in heterogeneous virtualized cloud comput-
ing. Sustain. Comput. Inform. Syst. 30, 100517 (2021)

13. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. 29(3),
682–692 (2013)

14. Merkel, D., et al.: Docker: lightweight Linux containers for consistent development
and deployment. Linux J. 2014(239), 2 (2014)

15. Sun, Z., Huang, H., Li, Z., Gu, C., Xie, R., Qian, B.: Efficient, economical and
energy-saving multi-workflow scheduling in hybrid cloud. Expert Syst. Appl. 228,
120401 (2023)

16. Sun, Z., Zhang, B., Gu, C., Xie, R., Qian, B., Huang, H.: ET2FA: a hybrid heuristic
algorithm for deadline-constrained workflow scheduling in cloud. IEEE Trans. Serv.
Comput. 16(3), 1807–1821 (2023)

17. Zhang, F., Tang, X., Li, X., Khan, S.U., Li, Z.: Quantifying cloud elasticity with
container-based autoscaling. Futur. Gener. Comput. Syst. 98, 672–681 (2019)

www.spec.org/power_ssj2008/results/res2021q3/
www.spec.org/power_ssj2008/results/res2021q3/

