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ARTICLE INFO ABSTRACT

Keywords: Benefiting from the flexible, scalable and secure environment, hybrid cloud can overcome the shortage of
Hybrid cloud limited resources in private cloud to simultaneously execute large-scale scientific workflows. In hybrid cloud,
Multi-workflow scheduling privacy-sensitive tasks are not allowed to be executed on public resources, while non-sensitive tasks are

Directed acyclic graph
Heuristic algorithm
Multi-objective optimization
Pareto front

unrestricted. As an NP-Complete problem, it is extraordinarily challenging to schedule multiple workflows
efficiently, economically and energy-savingly under quality-of-service constraints. This paper models the
hybrid-cloud-based privacy-aware multi-workflow scheduling as a tri-objective optimization problem that
optimizes workflow-oriented total tardiness, private-cloud-oriented total energy consumption, and public-
cloud-oriented total monetary cost. To the best of authors’ knowledge, few studies have been conducted on
the tri-objective privacy-aware multi-workflow scheduling in hybrid cloud (PMWS-HC). To solve this problem,
we dissect various factors involved during task scheduling and devise a novel Heuristic Scheduling Algorithm
based on 9 Factors (HSA9Fs), which dynamically selects the workflows and tasks to be scheduled, and the
corresponding VMs to execute them. To optimize the three conflicting objectives simultaneously, we propose
a nested algorithm called MSIA, which first employs a Multi-objective Salp swarm algorithm to explore for
the Pareto solutions, and then uses an Iterative greedy Algorithm to perform a refined search on individuals
to obtain high-quality solutions. Extensive Medium-Small-Scale and Large-Scale simulation experiments show
that both HSA9Fs and MSIA outperform state-of-the-art scheduling algorithms in several multi-objective
performance metrics.

1. Introduction Workflow originates from the manufacturing industry and has been
widely applied in IT, management, transportation and other indus-
tries (Deelman et al., 2009; van der Aalst & van Hee, 2004). Nowadays,
scientific workflow is growing increasingly complicated, with hundreds
or even thousands of various types of tasks with dependencies (Chen
et al., 2019; Qin et al., 2022). Workflow applications typically have
deadline constraints and need a large amount of computing resources

) . ) X to process. Furthermore, certain tasks, such as sensitive tasks of user
and cost requirements. Furthermore, the enterprises with hybrid cloud . . ¥ . S . .
information, financial or medical information related to privacy, must

can quickly adapt to business and technological changes. Therefore, be executed on devices with high security. In reality, such sensitive

how to efficiently manage hybrid cloud resources and schedule tasks tasks have been widespread (Ali et al, 2015; Mthunzi et al., 2020).
with users’ requirements is an urgent issue to address.

Hybrid cloud is a primary computing paradigm that enables isola-
tion, sharing, processing and storing of resources across private and
public clouds to control costs and achieve an optimal balance among
privacy, scalability and elasticity. Based on this, enterprises can choose
whenever and wherever to host and process data to satisfy performance

The privacy-aware workflow is more suitable for execution in hybrid
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cloud and has been preliminary studied (Lei et al., 2022; Sharif et al.,
2017; Wen et al., 2020). For hybrid cloud, users must perform sensitive
tasks in private cloud. When private resources are insufficient to meet
quality of service (QoS) for non-sensitive tasks, near-unlimited public
cloud resources can be rented on demand (Yuan et al., 2017). Cloud
computing, as we all know, is a multi-user platform that can manage
workflows submitted by multiple users simultaneously, leading to the
emergence of Workflow as a Service (Hilman et al., 2020; Zhou et al.,
2016). Compared with single workflow scheduling, the advantage of
multiple workflow scheduling lies in sharing and reusing idle time
slots. However, under the heterogeneous computing environment and
different QoS constraints, multi-workflow scheduling becomes more
complicated and difficult.

This paper focuses on privacy-aware multi-workflow scheduling in
hybrid cloud (PMWS-HC), which is to schedule each task in workflows
to an appropriate resource for satisfying some performance criteria.
First, tardiness is a delay penalty if the workflow is completed after
its deadline (Rimal & Maier, 2017). It is usually used to measure the
time efficiency of executing a workflow. Since workflow scheduling
problem has NP-complete property (Mohammad Hasani Zade et al.,
2021; Wu & Wang, 2018; Xia et al., 2022) and it can be reduced
to PMWS-HC, PMWS-HC is also NP-complete. Second, minimizing the
cost of leasing public cloud resources under deadline constraints is an
essential economic metric. A task being assigned to a high-capacity
resource type usually involves a lower execution time and higher cost.
Furthermore, when more VMs are used, tasks are scattered over VMs,
increasing the idle time of VMs and data transmission time among tasks.
Third, minimizing energy consumption has always been a significant
issue that cannot be ignored in data centers. Tasks being assigned to
low configuration resource types usually take longer to execute and
consume less energy. Obviously, minimizing tardiness, leasing cost and
energy consumption are three conflicting objectives, so PMWS-HC is a
multi-objective optimization problem (MOP).

In recent decades, MOP is usually solved by evolutionary algo-
rithms. The concept of Pareto domination is generally used in MOP to
reflect the simultaneous trade-off among multiple objectives. Among
the studies related to PMWS-HC, there are some studies (Pasdar et al.,
2020; Rimal & Maier, 2017; Wang et al., 2021) that evaluate the
algorithm performance on each objective separately. In this way, their
algorithm is still a single-objective optimization algorithm, and cannot
trade off multiple objectives simultaneously. Other studies (Hafsi et al.,
2022; Li et al., 2022, 2019; Wang & Zuo, 2021; Xia et al., 2022; Zhou
et al., 2019) directly specify the resources to execute tasks, ignoring the
characteristics of workflow scheduling. This method relies entirely on
algorithmic optimization and cannot proactively select the workflow
and its tasks to be scheduled, as well as the resources needed to
execute the task. Though there exist some studies (Chen et al., 2019;
Saeedi et al.,, 2020; Wen et al., 2020) that involve simple rules to
make decisions, they are limited to the initialization of algorithm, while
the aforementioned decisions are still not proactively made during the
optimization of the algorithm. There are many factors that should not
be ignored during workflow scheduling. These factors can help us make
decisions, such as (1) unscheduled tasks: their tightness relative to the
deadline affects which task or workflow is scheduled first; (2) the task’s
actual available time: it will vary on different VMs and determine the
task’s actual start time, and it affects whether the scheduling scheme
is compact or meets the QoS; (3) dependency between tasks: deploying
a task to the VM that executes its parent task can save transmission
time. Such factors need to be further explored and fully utilized to make
scheduling decisions, but none of the existing studies have done so.

In order to make scheduling decisions proactively, we dissect the
scheduling process to extract 9 influencing factors (i.e., unscheduled
levels, current completion times, workflow deadline, existing schedul-
ing results, urgency, sub-deadline, Earliest Available Time, Actual
Available Time, and the maximum completion time of all scheduled
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tasks). Based on this, we devise a novel Heuristic Scheduling Algo-
rithm based on 9 Factors (HSA9Fs), which can overcome the above
shortcomings of the existing algorithms. The heuristic algorithm has
a limited search space due to its strong regularity, whereas MOP has
many non-dominated solutions. Therefore, employing the global search
capabilities of evolutionary algorithm, we propose a nested algorithm
of Multi-objective Salp swarm algorithm (MSSA) (Mirjalili et al., 2017)
and Iterative greedy Algorithm (IGA) (Ruiz & Stiitzle, 2007), named
MSIA, to further tackle this problem. Since MSIA’s decoding is based on
HSA9Fs which can quickly evaluate individuals, MSIA can solve large-
scale problems. To the best of our knowledge, few studies have been
conducted on the tri-objective PMWS-HC. Our main contributions are
listed as follows:

We establish a hybrid-cloud-based privacy-aware multi-workflow
scheduling model, which simultaneously considers minimizing
workflow-oriented total tardiness, private-cloud-oriented total en-
ergy consumption and public-cloud-oriented total monetary cost.

By dissecting various factors involved during scheduling, we cre-
atively propose HSA9Fs, which dynamically selects the workflows
and tasks to be scheduled and the VMs to be executed. Our scheme
is non-greedy and can schedule tasks compactly by comprehensively
considering 9 factors.

To explore Pareto solutions for trading off the tri-objective consid-
ered, we exploit MSSA to search Pareto solution globally to achieve
the joint optimization of efficiency, economy and energy-savingly
and IGA to deeply search in the neighborhoods of individual to
improve the quality of the solution.

We conduct extensive Medium-Small-Scale and Large-Scale simu-
lation experiments based on five well-known real-world workflow
applications to investigate the diversity, convergence and efficiency
of the proposed algorithms. The results show that both HSA9Fs and
MSIA outperform state-of-the-art scheduling algorithms in several
multi-objective performance metrics.

The organization of this paper is as follows: In Section 2, we re-
view the related work on privacy-aware workflow and multi-objective
workflow scheduling. In Section 3, we present the cloud workflow
scheduling model. In Section 4, the proposed HSA9Fs and MSIA are
presented in detail. Section 5 verifies the performance of the proposed
algorithms. Section 6 concludes the paper.

2. Related work

Security and privacy protection have become key issues in cloud
environments (Mthunzi et al., 2020; Ren et al., 2019). As a typical
cloud application, workflow scheduling also has related issues and
some research as reported in Hu et al. (2020), Lei et al. (2022), Li et al.
(2016). Li et al. (2016) considered security overhead model and made
risk analysis for workflow, and proposed a security and cost aware
scheduling algorithm for workflow in public cloud, which tried to
minimize the total workflow execution cost while meeting the deadline
and risk rate constraints. Hu et al. (2020) considered a privacy-aware
Spark application scheduling problem in hybrid cloud and proposed a
scheduling algorithm SSPPH (Spark Scheduling with Privacy Protection
in a Hybrid Cloud) to minimize the total rental cost. Spark application is
modeled as a two-layer topological structure. Lei et al. (2022) proposed
two scheduling heuristics for privacy and security-aware workflow
scheduling in hybrid cloud to optimize the cost under the constraints
of deadline and privacy. They developed a hybrid encryption method
based on three levels constraints to ensure data transmission security.

These previous studies focused on single-objective optimization,
but there are also related investigations involving multi-objective op-
timization. Wang et al. (2021) considered security-aware bag-of-tasks
scheduling problem in hybrid cloud. They proposed a heuristic task
scheduling method concerning Security and evaluated the method on
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Table 1

Comparison of related works for workflow scheduling problem.
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Ref. Workflow model  Resource model Optimization model Problem’s characteristics

Li et al. (2016) Single workflow  Public cloud 1: Cost Security overhead model and workflow risk analysis.

Hu et al. (2020) Spark application Hybrid cloud 1: Cost Privacy tasks can only be executed on private cloud resources.
Lei et al. (2022) Single workflow  Hybrid cloud 1: Cost Encryption and decryption processes are integrated into the

Rimal and Maier
(2017)
Pasdar et al. (2020)

Multi-workflow

Single workflow

Public cloud

Hybrid clouds

scheduling model, which is similar to the transmission time.
Makespan, Tardiness and The cost of data transmission is not considered.
Resource utilization rate

Cost and Makespan Overall execution cost depends on the cost of used storage,

Wang et al. (2021)  Bag-of-tasks Hybrid clouds a

tasks and Energy
Wen et al. (2020)
Hafsi et al. (2022),
Zhou et al. (2019)
Xia et al. (2022)
Li et al. (2019)

Li et al. (2022)

Public clouds 2:
Hybrid clouds 2:

Single workflow
Single workflow Cost and Makespan
Private cloud 2:
Public cloud
Hybrid clouds 3:

Single workflow
Multi-workflow
Multi-workflow

@

Saeedi et al. (2020)  Single workflow  Public cloud 4:

Cost, The number of finished
Cost and Makespan
Makespan and Energy

Cost, Makespan and Service quality
Cost, Makespan and Energy

consumed bandwidth, and computation in public cloud.

Each task has corresponding deadline and security level constraints,
and a security model is established.

The multi-data center model and storage cost are considered.
Trade-off between makespan and cost.

Trade-off between makespan and energy consumption.

Task scheduling in cloud manufacturing; Maximize service quality.
Both on-demand and reserved instance types are considered; Energy
saving by Dynamic Voltage Frequency Scaling.

Cost, Makespan, Energy and Reliability Energy consumption only considers dynamic energy consumption.

aThis multi-objective optimization problem does not evaluate the performance of the algorithm through the non-dominated solution, but each objective is evaluated and analyzed

separately.

metrics such as makespan, cost efficiency and energy efficiency. Pas-
dar et al. (2020) proposed a two-stage algorithm to minimize exe-
cution time and cost: it first generated an initial scheduling strat-
egy based on an extended genetic algorithm (GA) and then dynam-
ically adjusted reschedule some tasks in response to volatile execu-
tion environments. Rimal and Maier (2017) proposed a cloud-based
workflow scheduling policy for batch compute-intensive workflows
in multi-tenant cloud computing. They evaluated the proposed algo-
rithm in terms of makespan, tardiness and resource utilization rate,
and etc. However, the above works are limited to evaluating the
considered objectives separately, rather than trading off multiple ob-
jectives. Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al,, 2002) is a classical Pareto-Dominance-based multi-objective
optimization algorithm. Wen et al. (2020) proposed a multi-objective
scheduling algorithm based on GA for workflow scheduling with pri-
vacy protection constraints. The trade-off objectives are makespan and
monetary cost. Based on many-objective particle swarm optimization
(MaOPSO0) (Figueiredo et al., 2016), Saeedi et al. (2020) proposed an
improved MaOPSO to optimize multiple conflicting objectives includ-
ing maximization of reliability and minimization of cost, makespan
and energy consumption. Zhou et al. (2019) and Hafsi et al. (2022)
proposed multi-objective approach named MOH (Multi-objective Opti-
mization for Hybrid clouds) and Genetically-modified Multi-objective
Particle Swarm Optimization (GMPSO), respectively, to simultaneously
optimize makespan and cost in hybrid clouds. Xia et al. (2022) pro-
posed a multi-objective GA combined with longest common subse-
quence, named GALCS, to simultaneously optimize makespan and en-
ergy consumption in heterogeneous cloud. Integrated longest common
subsequence can record the beneficial gene blocks and increase GA
performance.

There are also a few works focusing on multi-objective multi-
workflow scheduling. Li et al. (2019) proposed two multi-objective
algorithms, ant colony optimization-based multi-objective algorithm
(MACO) and NSGA-II-based multi-objective algorithm (MGA), to solve
the multi-task scheduling in cloud manufacturing. They developed a
model for scheduling many heterogeneous complicated tasks while
taking into account three objectives: makespan, total cost, and to-
tal service quality. In their model, each task is represented by a
DAG (Directed Acyclic Graph), and all tasks are available at the
beginning with the same priorities. Therefore, it can be regarded as
a tri-objective multi-workflow scheduling problem. Li et al. (2022)
proposed a Chaotic-nondominated-sorting Owl Search Algorithm to
solve multi-workflow scheduling in hybrid clouds. The optimization
objective was to minimize makespan, cost and energy consumption

simultaneously under the deadline and budget constraints. They con-
sidered both reserved and on-demand pricing models in the public
cloud and utilized Dynamic Voltage Frequency Scaling to reduce energy
consumption and save costs. Pan et al. (2021) proposed a Multi-
objective Clustering Evolutionary Algorithm (based on Strength Pareto
Evolutionary Algorithm He et al., 2017) for multi-workflow scheduling
under deadline constraint in Mobile Edge Computing to minimize the
cost and energy consumption.

The details of the above related works for workflow scheduling
problem are tabulated in Table 1.

3. Cloud workflow scheduling model

Fig. 1 presents a multi-workflow scheduling framework in hybrid
cloud. Users submit workflows through the Workflow as a Service
Portal within a certain time interval. The Cloud Resource Manager
monitors the resources in hybrid cloud, and then cooperates with the
Task Scheduler to complete the tasks-to-resources mapping, and feeds
back the scheduling results to users. Task scheduler is the core of
the framework. This paper focuses on the tri-objective optimization of
offline multi-workflow in hybrid cloud. The preemption of tasks is not
allowed.

This section first introduces the structure and data related to work-
flow application, and then introduces the different configurations of
public cloud and private cloud, and finally constructs a tri-objective
multi-workflow scheduling model through workflow scheduling anal-
ysis. Table 2 summarizes the symbols used in this section to improve
readability.

3.1. Privacy-aware multi-workflow applications model

In cloud, a set of workflow applications can be represented as G =
ng‘g —1,2,...,1G]\ , which G& = (A%, W, E%, D%, @) is the DAG
escription of a workflow.

. A8 = af|i =1,2,..., |A3|} is the set of tasks, where af denotes a
task in workflow G¢ and |Af| denotes the total number of tasks in
the workflow.

c WE = wf|af € A% | is the set of weights on tasks, which denotes

the computation of tasks in giga floating point operations (GFLOP).

E¢ = {pg o g)‘af,af eAg;i<j? is the set of data depen-

e..=(a,,a.
ij i”%j

dency constraints between tasks. Let Suc(af) = {af'efj € E® } and
Pre(a}) = {aﬁ |ej?’[ € E-‘)’} be the sets of all immediate successors and
predecessors of task o, respectively. A task af cannot be started
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Fig. 1. Multi-workflow scheduling framework in hybrid cloud. ) represents that the
task is private sensitive.

unless all of its immediate predecessors (i.e. Pre(af )) have finished its
execution and the relevant data dependencies have been transmitted
to alig .

D¢ = {dfj‘efj € E¢ } is the set of transmitted data, where dfj is the
volume of data to be transmitted from task a,.g to task af , in GFLOP.
D8 = {¢f|¢ig €{0.1}.4f € Ag} is the set of privacy tags for tasks. If
@7 =1, it means that task & contains private data and can only be
deployed on resource instances in private cloud; Otherwise, it can be
deployed on resource instances in private or public clouds.

3.2. Hybrid cloud model

Hybrid cloud is made up of two cloud data centers: public cloud
and private cloud. The computing resources in both data centers are
in the form of virtual machines (VMs) or instances. Generally, private
cloud provides a fixed number of VMs, whereas public cloud provides
an “unlimited” number of VMs.

3.2.1. Public cloud

In public cloud, VM instances have the following characteristics:
processing capacity, network bandwidth, leasing price. Let P® =
{ pg‘k =1,2,..., |P° } denote the set of all instance types in public

cloud, where ‘P0| is the total number of types.

U = iU (pg)‘pg € PO} is the set of processing capacity of CPU in
Giga Floating Point Operations Per Second (GFLOPS, a widely used

metric Rodriguez & Buyya, 2014; Sahni & Vidyarthi, 2018), where

U(p?) is the processing capacity of instance type pY.

B = {B(p(lz, p2)| pg, pg IS PO} is the set of communication bandwidth

between different instance types. B(pg, pg) is the communication

bandwidth between instance type p? and p?, which depends on the

smaller bandwidth of the two instances (denoted as b(pg) and b(pg),

respectively). That is, B(p, p9) = min {b(p9), b(pD)}.

M = {M (pg))pg 1S PO} is the set of leasing prices, where M(p?) is

the per-unit price of instance type pg.

M is the price of transmitting unit data. In general, public clouds
charge their network resources only for the data transferred out,'.

1 https://www.aliyun.com/product/ecs https://aws.amazon.com/cn/ec2/
pricing/on-demand/
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Table 2
Symbols and meanings.
Symbol?  Explanation
Multiple Workflows
G* A workflow, G¢ € G.
af A task in workflow G%, af € AS.
wf The weight of task df, wf € We.
efj Data dependency between task af and af,, efj € Es.
Suc(af)  All immediate successors of task af.
Pre(af) All immediate predecessors of task af.
dfj The volume of data to be transferred from task af to task af, digj € Ds.
¢f The privacy tag of task af, ¢ € {0,1}, ¢f € ®s.
Hybrid Cloud
Py An instance type in public cloud, p? € P°.
P An instance type in private cloud, p} € P'.
P All instance type in hybrid cloud, P = PO u P1.
u@p?) The processing capacity of instance type p.
B(p?,p}) The bandwidth between instance type p) and p.
M (pg) The per-unit price of instance type pg.
M The price of transmitting unit data.
M1 The per-unit price in Hibernation state.
o) The idle power of instance type p;.
o) The dynamic power of instance type p;.
0 The transmission power of router.
Scheduling Model
vy An instances leased by users, v, € V.
Ny The mapping relationship between VM v, and data centers, 7, € {0,1}.
of The instance v,’s type, v} € P.
. The mapping relationship between task af and VM uv,, ¢ € {0,1}.
ET} The execution time of task af on VM v,,.
CTﬁ'”’ The communication time when tasks a and a; are assigned to VMs v,
and v, respectively.
FT# The actual finish time of task af.
ST The actual start time of task af.
cs The complete time of workflow G¢.
T¢ The tardiness of workflow Gé.
DL# The deadline of workflow G&.
T The total tardiness of multi-workflow.
ES The energy consumption of task a.
R The total dynamic energy consumption.
E The total static energy consumption.
I::f/.’”' The communication energy consumption between task af and af.
B The total communication energy consumption.
The total energy consumption.
ST The h-th start time of the rented VM v, in running state.
FT,, The h-th end time of the rented VM v, in running state.
ﬁ:fh The 7'-th start time of the rented VM v, in hibernate state.
ﬁ:llh The 7’-th end time of the rented VM v, in hibernate state.
M The total rental cost.
Mfl'kh The communication cost between task af and .
M The total communication cost.
M The total monetary cost.
AS The non-dominated solution set/archive set.

aIn this table, ¢ = 1,2,...,|G|; i,j = 1,2,...,|A%|; Instance type index k,h =
1,2,....|P°| (or |P']); Instance index k,h=1.2,....|V|.

The pricing model is based on an on-demand billing scheme and the
minimum billing period is 1 s with a mandatory-minimum of 60 s.
As in Sun et al. (2022), we consider cold startup time, warm startup
time and hibernation state. Cold startup time refers to the initial boot
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time after the instance is leased, during which instance initialization
and task mirror deployment are performed. Warm startup time refers
to the restart time after hibernation, which is less than the cold startup
time. Hibernation state refers to the state of suspend-to-disk operating
system for which a lower per-unit price, denoted as M*, is charged.

3.2.2. Private cloud
Let Pl = {p}{|k =1,2,..., ‘Pl |} denote the set of all instance types

in private cloud, where |P!| is the total number of types. An instance

has the following characteristics:

+ The definition of processing capacity and bandwidth is the same as
that of public cloud.

« 0= {O_(p}c)|p}c e Pl } is the set of idle power, where O(p; ) is the idle
power of instance type p,lc.

« 0= {6(p}()|p}( 1S Pl} is the set of dynamic power, where O(p;) is
the dynamic power of instance type pi.

+ O is the transmission power of router. Suppose routers have the same
power, regardless of the network topology.

There is a limit to the number of instances in private cloud. It is
assumed that the instances of private cloud can be obtained and used
at any time until all tasks are finished. However, it still takes time to
deploy the task execution scenario or initialize instance, assuming that
the time is the same as the cold startup time in public cloud. Assume
that hybrid cloud has enough memory to execute workflows.

3.3. Problem formulation

Let V' = [v,0y,....0)] be the VM instances used by all users,
where |V| is the total number of VMs. Let , € {0,1} be the mapping
relationship between VMs and data centers. 7, = 1 indicates that v, is
in private cloud, otherwise it is in public cloud.

@

{1, vy, is in private cloud,
N =

0, vy is in public cloud.

vy € P(P= POy P) is instance v),’s type. Thus, U(v}) is instance
v,’s processing capacity. M (uf ) is instance v,’s per-unit price. The
parameters of the corresponding power are the same.

Let g“igh € {0,1} be the mapping relationship between tasks and VMs,

where ¢5 =1 if task o is assigned to v, otherwise it is 0.

1, task & is assigned to v,
¢ = 4 s " @
! 0, otherwise.

We need to ensure that each task is scheduled only once. At the same
time, when a task has a private property, it should be deployed in a
private cloud. The corresponding constraint is shown in Eq. (3).

g _ g _
{they Ghm=1. 4 =1 @
ZuheV =1 #; =0.
3.3.1. Total tardiness
The total tardiness is the sum of tardiness of all workflows. The
execution time of task af on VM v, is

w?
g i

T:
ih U(U;:)

X¢E, @

When tasks af and af are assigned to VMs v, and v, respectively, their
communication time is

‘
L
B(v;,vy)
0, otherwise.

g o 8
X8 X8, v # v,
CTi,kh _ G Xy Vi F Uy )
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When v, equals to v, the communication time on the same VM is 0.
The precedence constraint between tasks is as follows:

8 8.kh g
FTE + CTEM < ST, o) € EX, 6)
FTS =STE+ Y ETS, a, € A%, @
v,V

where FT? denotes the actual finish time of task af, and ST¢ denotes
the actual start time of task a°. The complete time of workflow G¢ is
C8 = max, cge {FT#}. The makespan of multi-workflow scheduling is
Cax = Maxgec {C4}. The tardiness of workflow G¢ is

T# = max {0,C8 — DL8}, (8)
where DL? is the deadline of workflow G5.

The total tardiness of multi-workflow is

T= 2 T¢, )

GEeG

3.3.2. Total energy consumption
The total energy consumption includes the dynamic energy con-
sumption during the task execution in private cloud, the static energy
consumption during standby, and the communication energy consump-
tion during data transmission within the private cloud and across data
centers. The energy consumption for executing task a; is
e — 8 AP 4
E}, = ET;, X O(v),) X gl.h X .
The total dynamic energy consumption is
E= Y Y > E. (10)
G8€G vyeV a;€AS
The total static energy consumption is
= (1P
E= Y (c,m -y Y ETfhxnh) x O(wP). (1)
vpEV G8€G a;€A8

The communication energy consumption between task af and af is

kh =
ekh _ {CTS X0, m+ny 21,
ij -

0, otherwise.

The total communication energy consumption is

™o mg.kh

-3 333 a2
GE€G v €V vyEV ¢ EES

The total energy consumption is

E=E+E+E. 13)

3.3.3. Total monetary cost

The total monetary cost includes the cost of leasing VMs in public
cloud and the communication cost when outgoing from public cloud.
Let ST, and FT,, be the -th start and end time of the rented VM v,
in running state, 7 > 1. Let ﬁfh, and ﬁ:[h, be the A’-th start and end
time of the rented VM v, in hibernate state, #’ > 0. The total rental
cost of VMs is
M > (M(uf) x Y (FT )y~ STp)+

h

vp€V, np=0

as
—H —H
MU 5 Y (FT = ST ).
h’

The communication cost between task af and af is
g Y g g — —

sk = dinMXCl.kxé’j, m=0&mn,=1,
Y 0, otherwise.

The total communication cost is

W= Y T YT as)

GE€G v €V vy EV ¢ EES
The total monetary cost is

M = N + M. (16)
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3.3.4. Scheduling model

The objectives of the studied problem is to minimize the total
tardiness, total energy consumption and total monetary cost of privacy-
aware multi-workflow scheduling. Based on the above discussions, the
constrained optimization problem can be formulated as follows:

Minimize T, E, M (17a)
subject to: Eq. (3), Vdi € A%, VG € G, (17b)
Eq. (4), Vv, €V, Vdf € A%, VG* €G, 17¢)
Eq. (5), Yo, v, €V, Ve;”'j € E8, VG? € G, (17d)
Egs. (6), (7), (8), VG® €@, (17e)
n, € (0,1}, Yo, €V, 176
¢ e (0,1}, Yo, €V, Vd¥ € A%, VGE € G, 17g)

where the decision variables are ¢%, 7, and ST (Yu, € V, vd¥ €
A8, VG € G).

3.4. Basic concepts of MOP

MOP concerns more than one objective simultaneously to explore a
trade-off between the conflicting objectives (Wu & Wang, 2018). it is
usually formulated as follows:

minimize f;(x), fo(x), ..., f5(x),
subject to: x € X,

where f(x), fo(x), ..., f.(x) are objectives to be minimized, and x is a
vector of decision variables, and X is the set of feasible solution. In
most cases, there may not be a solution that minimizes all objectives.
Therefore, the Pareto optimal solutions are adopted as the results of
MOP.

Definition 1 (Pareto Dominance). A solution x; is considered to
(Pareto) dominate solution x, (denoted as x; > x,) if and only if (a)
Vi€ {1,2,....2): fi(x)) < fi(xy), and (b) Fi € {1,2,....z}: fi(x1) <
fi(x2)-

Definition 2 (Pareto Front). A solution x is called a non-dominated
solution or Pareto solution if it is not dominated by any other solution.
The solution set containing all Pareto solutions is defined as the Pareto
Front/Pareto set.

The multi-objective optimization algorithms are required to find a
non-dominated solution set/archive set (4S). There are two main
metrics to evaluate the obtained AS: (1) HyperVolume reflecting the
diversity and convergence of AS. (2) Coverage Rate reflecting the
dominance relationship between two archive sets.

4. The proposed multi-workflow scheduling algorithm (MSIA)

Fig. 2 shows the flow chart of our proposed algorithm. At first,
the population is initialized with HSA9Fs and random method, and
the archive set is initialized. Then, MSSA is used to update the pop-
ulation, and IGA is used to further optimize individuals. The relevant
implementation details are introduced in the following sections. Table 3
summarizes the symbols used in this section.

4.1. Preprocessing operator

We present the preprocessing operators involved in the proposed
algorithm for preprocessing multi-workflow structures and data.
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B TG
’ Generate an individual with HSA9Fs L
’ Generate other individuals randomly } Subsection 4.3.1

’ Initialize the archive set AS ‘

-- Subsection 4.2

¢ Algorithm optimization
Update population with MSSA | Subsection 4.3.2

‘Choose a source food from AS ‘

‘ Update salps ‘

] Update individual with IGA [T " Subsection 4.3.3

’ Destruction ‘

’ Reconstruction ‘

v

’ Update the archive set AS ‘

’ Output the archive set AS ‘

Fig. 2. Flow chart of the proposed MSIA.

(af \»(af »ds ,»@ —> (923 ;‘@
\__/ \__/ \__/ N~

Fig. 3. An example of sequence tasks merging into one task block.

4.1.1. Merging

There are some sequential tasks with single-output and single-input
structure in DAG, which satisfy Eq. (18). As in Sahni and Vidyarthi
(2018) and Sun et al. (2022), we merge them into a task block to sim-
plify DAG. The task block’s execution time is the sum of the execution
times of all of its internal tasks, and there is no data communication
within the structure. Fig. 3 shows three sequence tasks merging into
one task block.

|Suc(af)) = 2

afESuc(af)

Pre(a§)| =1, ¢f =¢*, a1s)

where ¢;‘." = ¢f denotes that the corresponding tasks have the same
privacy tag.

4.1.2. Task topological level
As in Hu et al. (2020) and Sun et al. (2022), task a¥’s topological
level L? in workflow G* is
1, if Pre(a}) =@,
g _
Li - max {Lg} +1, otherwise. ()
anEPre(a‘ig) J

Thus, the set é,gl. € A8 of tasks at each level can be represented as

@ = {a|i = L.af € a4}, 20)
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Table 3
Symbols and meanings in Section 4.
Symbol Definition
Lf Task a¥’s topological level.
ay The ith task of the /th level of workflow G, a} € As; ﬁf’ is the
number of tasks at /th level.
SubDf The sub-deadline of task af.
¢ The maximum completion time of the scheduled tasks of workflow G%.
7 The maximum completion time of all scheduled tasks.
né The scheduled topology level of workflow G%.
A The pseudo-critical path length of workflow G#.
ué The urgency of workflow Gé.
g The workflow G# to be scheduled.
a The task to l_)e scheduled, assuming it is the ith task of workflow G%,
that is a = af.
i The Earliest Available Time.
m The Actual Available Time.
7 The idle interval, 7, = [7,0, 7]
vV The available VM set.
14 The intersection of the VM set with running tasks at the adjacent three
levels (7%, n¥ — 1 and 7% — 2) and the available VM set V.
h The instance selected to execute the task a.
P The solution, 7 = [z%, z%].
zt Encoding based on workflow topological levels in Stage 1.
x4 Encoding in Stage 2; =4 is the vector description of AS.
”:u The ith task at the /th level of workflow G%, ”;/, e nh.
¢ The continuous vector of zt.

where df’. denotes the ith task at the /th level, / = 1,2,...,max {L8},

i=1,2,..., ‘ﬁlg , and Flg is the number of tasks at /th level. Especially,
tasks at a lower topological level have higher priorities than tasks at a

higher level (Wu et al., 2016).

4.1.3. Division sub-deadline

A task’s latest finish (start) time is the latest time at which it can be
finished (started) so that all tasks can be completed before deadline. In
this paper, we set a sub-deadline for each task based on La}gtest Finish

Time. We use the maximum execution time ET¢ = and

i
miny, ep {U(py) }
2

d
the maximum transmission time CT fj = Y

——_— to calculate latest
min,, ep { b }

start time and finish time:

: gy _
DL8, if Suc(a;}) =@,

max ST —CT5. Y, otherwise.
aJGSuc(af) J st

Fré =

§ _ poE g
STj—FTj ET/..

The sub-deadline SubD; of task af is given in Eq. (21).

g ) o
SubDf= {FTI., if Suc(a;) =@,

e @1)
8 X FT[. , otherwise,

where ¢ is a random factor of the workflow G$ within the range
[0.95,1]. The smaller the £8, the more urgent the tasks in the workflow
and the smaller the sub-deadline.

4.2. Heuristic scheduling algorithm based on 9 factors (HSA9Fs)

Heuristic scheduling algorithm is to dynamically determine the
scheduling order of workflow topology level through the established
rules. Each workflow is scheduled at the order of topology level. All
tasks at the same level are independent of each other, without data
transmission. They are scheduled according to the descending order of
task weight. Algorithm 1 presents the procedure of HSA9Fs.
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Algorithm 1: HSA9Fs
Input: Resource P, multi-workflow G
Output: Heuristic scheduling result
1 Set 7%, 7 and 1, to 0, where G% € G;
2 Set V « P;
3 fori « 110 Y A% do
Compute p} by Eq. (22), g €G, c € {0,1};
Compute u¢ by Eq. (23), g€G, ¢ €{0,1};
Get g through Eq. (24);
18 <15+1;
Sort the tasks in ﬁliig in descending order of weight;

® N o U b

9 foreach o € ﬁfg do
// Algorithm 2

10 L call ResourceSelection;

call Adaptive ad justment solution;

// Algorithm 3

-
-

4.2.1. Get the workflow to be scheduled

Multi-workflow scheduling first needs to select a workflow to sched-
ule, which is determined by the pseudo-critical path and urgency of the
workflow. They (pseudo-critical path and urgency) comprehensively
consider factors such as unscheduled levels, current completion time
and deadline of workflow.

Let 78 denote the maximum completion time of the scheduled tasks
of workflow G8, 7 = max { 78 |Gg S G? denote the maximum completion
time of all scheduled tasks, and /¢ denote the scheduled topology level
of workflow Gé.

The pseudo-critical path? is defined as the sum of the minimum
execution time of tasks at each unscheduled level (that is, assume
that tasks are executed on the instance with the highest processing
capacity). In different cloud environments, the pseudo-critical path
length are different. Let p¢ denote the pseudo-critical path length of
workflow G, g € G,c € {0,1} (line 4 in Algorithm 1). If ¢ = 0, it is in
public cloud; otherwise, it is in private cloud.

0, if 18 =max{L8},
pf = {ma L) magegge {wf } . 22)
———, otherwise.

I=ig+1 MAXp epe {U(Pk)}

The urgency of a workflow is the ratio of the pseudo-partial critical

path to the remaining time (the difference between the deadline of the
workflow and its current maximum completion time). Let x¢ denote
the urgency of workflow G¢ (line 5 in Algorithm 1). The urgency of a
scheduled workflow is negative infinity (—co) by default.

—0o, if 18 =max (L8},

ltf = pf ' (23)
———, otherwise.
DL8 — 18

When uf,c =0 or 1 is in the range of (0, 1), it means that the deadline
can be met in the configuration with the highest instance execution
ability; Otherwise, it will miss the deadline even in that configuration.

PMWS-HC should make the best use of private resources, so the
workflow with the highest urgency based on private cloud (¢ = 1) will
be the workflow to be scheduled, and the topology level of scheduling is
the scheduled level plus 1, that is, /€ = [£ +1. g (or G?) is the workflow
to be scheduled (lines 6-7 in Algorithm 1).

& = argmax uj. 24
GteG

2 Since this critical path is based on the topology level, the tasks in the
path are not necessarily on one path in the DAG, so it is called pseudo-critical
path.
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the task to be

Actual available time Position  [¢r

Earliest available time scheduled
al ] [ Y
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o 5t h 13 Iy Is 1 t7

Fig. 4. Get the Earliest Available Time diagram.

4.2.2. Task scheduling and VM selection

After determining the workflow (or workflow topology level) to be
scheduled, the tasks to be scheduled will be determined. In HSA9Fs,
tasks are scheduled in descending order based on task weights at
the same level (lines 8-10 in Algorithm 1). When selecting VM, we
comprehensively consider the existing scheduling results, urgency, sub-
deadline and other factors, as shown in Algorithm 2. Before resource
selection, we first judge the privacy tag of the task to be scheduled.
We only select resources from the private cloud if it is a sensitive task
(lines 1-4 of Algorithm 2).

Let a be the task to be scheduled, assuming it is the ith task of
workflow G%, that is a = af. The Earliest Available Time is the
maximum value of the sum of the actual finish time of its predecessor
task and transmission time. The Earliest Available Time ?fh of task « on
VM v,, is (line 5 in Algorithm 2)

Dur€, if Pre(a) =

<E _ _ _

Tah =) max { FTJfg + CTﬁ;kh} . otherwise, (25)
afEPrc((x)

where task a§ is executed on VM v;, Dur® is the duration of cold
startup. The Earliest Available Time ignores the scheduled tasks on the
VM and is used to calculate the Actual Available Time.

For Actual Available Time, we design a calculation method suitable
for multi-workflow scheduling. According to the current scheduling
result, we can get the idle interval 7, = [r,,7,;] on one VM, where
q‘i =1,2,...,|z| ;. 750 and 7;; denote the start time and end
time of the ith interval r;, respectively. When constraint Eq. (26) is met,
task « can be executed in the idle interval z;. The Actual Available Time
f;‘h depends on the idle interval that satisfies this constraint first (line
6 in Algorithm 2), as shown in Eq. (27).

TiET:{

g

max {7, 70 } + <71, (26)

U@ ”)
4, = min{ max {7, 5} |7, satisfies Eq. (26),7, € 7 }. @7

For example, « is the task to be scheduled, and Fig. 4 is a Gantt chart
of a VM v;.. On this VM, the Earliest Available Time of task « is 7,, that
is, it can be executed at any time after ¢, without affecting other tasks.
The idle intervals after (including) 1, are [tq,13], [t4,16] and [t;, +o0],
while the intervals [14,%4] and [t;, +o0] can satisfy the execution time
constraint Eq. (26). To execute task « as early as possible, we take 7,
as its Actual Available Time on this VM.

When the Actual Available Time plus the task’s execution time does
not exceed the sub-deadline of the task, the VM is deemed to meet the
sub-deadline, and all such VMs constitute an available VM set V. We
select the VM to execute the task through the following three-layers
specific rules:

+ Lines 8-9 in Algorithm 2. In the hybrid cloud, when the urgency u#
is not within (0,1), or when the available VM set V is empty, the
VM is selected according to the earliest completion time, as shown
in Eq. (28).

g
7= —
argmin 4 7., + . (28)

heV U(v}’:)
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Algorithm 2: ResourceSelection

Input: Workflow g (G?3), task « (or a? ), VMs set V
Output: Scheduling result of the task

1 if ¢f ==1 then // Sensitivity judgment
2 ‘ V' « the VMs of the private cloud in V;

3 else

4 | Ve

«

Compute Earliest Available Time ffh by Eq. (25), he V';

Compute Actual Available Time fgh by Egs. (26) and (27),
heV’;

Get VM set V' that meets sub-deadline through 7, ;

8 if u¥ ¢ (0,1) or V == @ then

‘ Get h by Eq. (28), he V'

10 else

11 Get the intersection V of VM set with running tasks at the

adjacent three levels (/%, I3 —1 and /£ — 2) and the VM set V;
12 if V # @ then

(=)

N

o

13 Get h by Eq. (29a), h € V/;
14 if A is not satisfied with Eq. (29b) then
15 L Get h by Eq. (30), h e V'
g §. A pré g, .
16 Cih <1, ST} « tah’ FT; < ST + U(u;’:)’

17 18 <—max{t_§,FTig}, femax{f,fg} ;

18 if only task a is running on VM & then V < Vu [v;’:];

» Lines 11-13 in Algorithm 2. For compact scheduling, the VM is
selected from the following set: the intersection V of the VM set with
running tasks at the adjacent three topological levels (/%, /8 — 1 and
78 — 2) and the available VM set V. In this intersection V, in order
to preferentially select one VM in the private cloud, we select the
corresponding VM using the minimum correction parameter (Actual
Available Time multiplied by (1 — 0.94,,)), as shown in Eq. (29a).
When the finish time of task a on this VM does not exceed the sub-
deadline SubDig_ or the current maximum completion time 7 (as shown
in Eq. (29Db)), the VM is used to execute this task.

h=argmin {74, x (1 -0.97,)},
heV
g (29)

Mg <min { subDf,}. (B)

nth U(U;I:)

Lines 14-15 in Algorithm 2. In the VM set V, the corresponding VM
is selected according to the another correction parameter, as shown
in Eq. (30).

h = arg min (DLg ;‘h ‘P ) X LP X Zf , (30)
heV Uv,) U, 1+7,
8
where (DLg' - ?A - %) is the remaining available time before

the deadline and ’P) is the execution time of the current task.

The product of these two parameters is to select a VM whose Actual
Available Time is not too early or too late, which makes the algorithm
non-greedy. 1 + 7, is the preferred private cloud. 72 = 7 —7E is
the difference between the Actual Available Time and the Earhest
Available Time, plus 1 to avoid the denominator being 0.

When the VM & that executes the task a is obtained, the actual start
time of this task is also determined, e.g. ST; £ — t“ Meanwhile, its
actual finish time can also be obtained (line 16 in Algorlthm 2). If only
task a is executed on VM &, the VM /& will be added to the used VM
instance set V' (line 18 in Algorithm 2). Particularly, when the number
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of this type of VM has reached the limit of private cloud resources, it
will not be added.

4.2.3. Adaptive calibration task actual start time

While designing scheduling algorithm, there is an universal com-
monality: tasks are executed as early as possible. There will be some
idle time caused if subsequent tasks cannot instantly start to be exe-
cuted in time owing to dependency constraints. However, some idle
time can be avoided by delaying the start execution time of some tasks.

Definition 3 (Block Structure Sun et al., 2022). It consists of tasks
that are continuously executed without idle intervals on the same VM.
Particularly, when there is only one task, it can also be called a block
structure.

Theorem 1 (Block Structure Property Sun et al, 2022). In a given
scheduling solution, first block structure on VM v, is X = [1,2,....|X]].
When vx € X,if —+F' > 0, the block structure can be moved backward
by Ar without affecting the execution of other tasks to reduce idle time and
cost.

op _ J min {sT, —CT"™ Y,y e (Suc(x) - Suc(x) N X), 31)
x FT,, if Suc(x)=g,
At = min { STy, — FTjy.min {i¥ - FT,|x € X }}, (32)

where i, ST, and FT, denote the estimated latest finish time, actual start
time and actual finish time of task x in the current solution.

Algorithm 3: Adaptive adjustment solution

Input: The mapping between tasks and resources ¢, the actual
start of tasks ST, and the actual finish time of tasks FT.

Output: f = (T, E, M)

/* Calibrate task Actual Start Time */

1 Procedure CalibrateTime (X)

2 Compute 7F" using Eq. (31), Vx € X;

3 | ifvxeX, if'>FT, then

4 Compute At using Eq. (32);

5 foreach x € X do

6 ST, « ST, + 4;

7 L FT, « FT, + At;

8 repeat

9 foreach h eV do

10 Find X as first block structure in instance v,;

1 CalibrateTime(X);

12 Find another X that ends with the penultimate task in
instance vy;

13 CalibrateTime (X);

14 until no block is found;
/* Setting VM hibernation x/
15 foreach h eV do

16 Record tasks .S),; on instance v;
17 var < 0, h < 1, i’ « 0;
18 | STy, « STy, — DurS;
19 for k < 1to|S,|-1do
20 P < Spis S ‘_Sh(k+1)§
21 if ST, — FT, > Dur & FT, - var > Gap" then
22 n < n +1, var < ST,;
—H —H
23 STy < FT,, FT,, < ST, — Dur";
24 FTyy, < FT,, h < h+1, ST, < ST;;
25 FTy, < FTShIS;.I;

26 Compute f = (T, E, M).
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Table 4
Solution representation in Stage 1.

Workflow G¢ 1 2 3

max(L#) 2 3 4

Dimension / 1 2 3 4 5 6 7 8 9
x 225 169 435 157 064 483 356 268 093
v 5 4 8 3 1 9 7 6 2
zk 2 2 3 2 1 3 3 3 1

1

Delaying task execution to save cost reflects the advantages of
the cloud’s pay-as-you-go. Consequently, the scheduling solution is
adjusted utilizing Theorem 1: Traverse two block structures on each
VM until there is no block structure that satisfies the constraint of
Theorem 1 (lines 8-14 in Algorithm 3). If the block structure satisfies
Theorem 1’s constraint, the actual start and finish time of correspond-
ing tasks will be updated. Delaying the operation will not lead to the
increase of the maximum completion time of the workflow, because it
limits the estimated latest completion time of tasks without successors
to the actual completion time. Therefore, the deadline will not be
missed.

4.2.4. Adaptive setting VM hibernation

Since certain instances support the hibernation function, if one
instance has been idle for an extended period of time, it is prudent to
hibernate the instance to save cost. However, excessive hibernation can
cause system failure or software function errors. As a result, a heuristic
strategy for scheduling when to hibernate an instance is proposed:
Traverse each idle interval between in instances, and set the idle
interval to hibernate state when the hibernation criteria is reached. The
hibernation criteria may be the shortest duration of hibernation and
the minimum gap between two adjacent hibernation in one instance.
According to the scheduled results, the tasks executed on each instance
and their start and finish time are known. Let S,; be the jth task
executed on instance v,. See lines 15-25 Algorithm 3 for details.

4.3. Meta-heuristic algorithm

4.3.1. Encoding and population initialization

Encoding. The encoding of algorithm is to determine the scheduling
order of workflows and their tasks. Because of the continuous nature
of MSSA, it cannot be directly applied to multi-workflow scheduling.
Therefore, it is crucial to develop an appropriate mapping scheme to
transform individuals (salps, continuous vectors) and task sequences
(discrete vector). In this paper, we schedule each DAG in the order
of topological level, and present the following two-stage encoding
method.

+ Stage 1. Encoding based on workflow topological levels, the encoding
length is the sum of the number of topological levels of all workflows.
The workflow index and its times are used to indicate the tasks of
the workflow topological level that will be scheduled, e.g. 7zt =

nlL,nZL,...,nQL] = [2,2,3,2,1,3,3,3,1], where nj = 2 denotes the

tasks at 3-rd level of workflow G2; né = 3 denotes the tasks at 2-nd
level of workflow G3.

Stage 2. Tasks within the topological level corresponding to Stage 1,

which are independent of each other and have no data transfer. Let

ﬂ;“ be the ith task in the /th level of workflow G¢ (z“ is the vector

representation of A% in Section 4.1.2).

Therefore, the whole solution is expressed as 7 = [zL, z4].
Smallest-order-value (SOV) rule (Qian et al., 2011; Sun et al., 2018)

are applied to conversions between continuous and discrete individ-

uals,® i.e. 7€ o zl. In the SOV rule, continuous vectors z€ =

3 Note: MSSA acts on Stage 1; IGA acts on both Stage 1 and Stage 2.
Therefore, there is continuous coding in Stage 1 only.
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76,750
y = [y1.¥2.....%1], where y, denotes the index of original z* in
the sorted z€, |L| = dec max(L®) is the encoding length. Then fill
L with max(L8) times g in the order of y values in turn. To better
understand the SOV rule, an example is provided in Table 4. In the
example, |G| =3, |L| = dec max(L8) =2+ 3+4 =9. In the ascending
order of 7€,

”\CL|] are ranked in ascending order to get an sequence

+ when z{ is the 1-st, then y5 =1 and z} = 1;
S is the 2-nd, then yg = 2 and z} = 1;
+ when z{ is the 3-rd, then y, = 3 and x| =
g is the 4-th, then y, = 4 and z, = 2, and so on.

Population Initialization. An initial solution is obtained by HSA9Fs
(Section 4.2). Others are randomly generated: In Stage 1, continuous
vectors are randomly generated, and then discrete vectors are gener-
ated by SOV rule; Stage 2 is the random permutation of tasks at the
same topological level; Then the Algorithm 2 in Section 4.2.2 is utilized
to decode.

4.3.2. Update mechanism of MSSA

Multi-objective Salp Swarm Algorithm (MSSA) is proposed by Mir-
jalili et al. (2017) for optimization problems on continuous domains.
By mimicking the swarming behavior of salps, MSSA models the salp
chains as two groups: leader and followers. The leader is the salp at
the front of the chain, while followers are the rest of the salps. The
salp leader guides the swarm, as the name implies, while the followers
follow one by one.

Let x; be the position of ith salp in the jth dimension, where i =
1,2,...,popsize; j =1,2,...,|L|. Each salp can be updated by Eq. (33)
or Eq. (34).

. Fj+cq X ((ub; —1b;) X ey +1b;), if c3<0.5, (33)
J F/ —c X ((ubj —lbj)Xcz +lbj), otherwise,
x;. = %(x;, + x;’l), 34

where F; is the position of source food in jth dimension, ub; and /b;
denote the limits of search domain at dimension j, ¢;, ¢, and ¢ are
random values follow the uniform distribution U[0,1). Since Eq. (33)
only updates its position in relation to F;, to balances exploration and
exploitation, c; is redefined as ¢; = 2exp( (l‘%f)z ), where IR and |IR|
denote the current iteration and the total numi)er of iterations.

Source food F is the current optimal individual or a individual in
the archive set AS. This AS retains the best non-dominated solutions
discovered thus far during iteration and has a maximum size |AS| to
store a limited number of non-dominated solutions. During iteration,
each salp is compared with all solutions in AS by using the Pareto
domination definition. If it can dominate a solution in AS, it will replace
the dominated solution; If it cannot dominate all solutions, the salp will
be added to the AS.

When the number of solutions in AS exceeds |AS|, we invoke the
method of Mirjalili et al. (2017) to remove the redundant solutions
from the dense neighborhood’s non-dominated solutions.

2 3 3 7 7 7 7 TmﬂX _Tmm :Ema,\‘ _]Emrn

. - = | Lmex="min  Emax=Emin

The maximum distance is d [dq,d5, ds] [ s lAs]
M0 —M

— '"‘”], where T, Tpins Epax> Emins Mex and M, are the

maximum and minimum values of the corresponding objectives in
AS, respectively.

The density of a solution is the number of solutions within the
maximum distance d around it.

According to the density, we utilize the Roulette Wheel Strategy (Wu
& Wang, 2018) to eliminate the redundant solution, and select an
individual as the Source food F in the same way.

10
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Algorithm 4: MSIA

Input: Resource P, multi-workflow G
Output: Archive set AS
/* Initialize population
1 Initialize the population with HSA9Fs and random method;
// Algorithms 1, 2 and 3
/* Algorithm optimization
2 for IR < 1 to |IR| do
/* MSSA
3 Initialize or update the archive set AS;
_ (4IR )
|TR|
Choose a Source food F from the archive set AS;
for i < 1 to popsize do
if i < popsize/2 then
‘ Update the salp x’ by Eq. (33);
else
L Update the salp x' by Eq. (34);

Shuffle Stage 2 randomly;
Let 7€ < xi, 7L « € ; // SOV rule
Calculate the fitness of 7 = [zL, z4] by Algorithms 2
and 3;
/* IGA
Let 7 « x;
for IR’ <1 to 10 do
', n"" « Destruction(x);
7 < Reconstruction(z’, 7'");
18 Calculate the fitness of 7 by Algorithms 2 and 3;
19 if 7 dominate = then
20 Let il © 7€, 7 « 7 ; // S0V rule
21 L break;

*/

*/
*/

4 c1 <—26xp(

© o N o U

10

11
12
13

*/
14
15
16
17

22 Update and output the archive set AS;

212[3(2]1]3[3[3[ 1] #*

Reconstruction ‘ 2‘ 1‘ 3‘ 3‘ 2‘ 3‘ 3‘ 2‘ 1‘ New 7zt

Fig. 5. Illustration of destruction and reconstruction.

4.3.3. Update mechanism of IGA

The Iterative Greedy Algorithm (IGA) was proposed by Ruiz and
Stiitzle (2007) for flowshop scheduling problem to minimize makespan.
The incumbent solution is partially destroyed at each iteration of IGA,
and the removed elements are greedily reinserted back into the solution
to build a new solution. These two operators are destruction and
reconstruction, respectively. If the new solution can dominate the in-
cumbent solution, the incumbent solution will be replaced. Illustration
of destruction and reconstruction is shown in Fig. 5.

+ Destruction. Randomly extract d elements from a given sequence

L of Stage 1 (or ”;1 of Stage 2: tasks of /th level in workflow
G#4) and get two sub-sequences z’ and z”’. z’ are composed of the
extracted elements and z” is composed of the remaining elements. d
is destruction parameter. For z’ of Stage 1, d is generated randomly
from a discrete uniform distribution U H "é” 2 x Hél‘
of Stage 2, d is generated randomly from a discrete uniform

xJza]]]-

] ] . For each

level 74 !

distribution U [1, H
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Table 5
Configurations and prices of VMs in public cloud.
VM Type Processing On-Demand Bandwidth Transmission
Capacity Cost ($/h) (Gbps)? Cost ($/Gb)
(GFLOPS)
1 c3.large 30.8 0.128 1
2 c3.xlarge 61.6 0.255 1.5
3 c3.2xlarge 123.2 0.511 2 0.02
4 c3.4xlarge 242 1.021 3
5 c3.8xlarge 475.2 2.043 3
aManually set according to the VM configuration.
Table 6
Configurations and powers of VMs in private cloud.
VM Type Processing Bandwidth  Dynamic Idle Transmission
(Numbers) Capacity (Gbps) Power Power Power (W)
(GFLOPS) W) w)
113 44 1.25 110 10
233 66 1.75 190 20 5
3@ 96.8 2.5 300 35

» Reconstruction. All extracted elements (z’) are randomly reinserted
one by one into possible positions of z” to form a new complete
sequence.

Consequently, in Algorithm 4, we detail the pseudo-code of our
proposed MSIA. Line 1 is the initialization population. Lines 3-13 are to
update the population using MSSA. Lines 14-21 are to further optimize
individual using IGA. The relationship between HSA9Fs and MSSA is
given as follows:

MSSA is a swarm intelligence optimization algorithm that can get
more non-dominated solutions through population iteration. We use
the solution generated by HSA9Fs as an initial individual of MSSA to
guide the algorithm evolution.

The encoding of MSSA is the execution sequence of workflow and its
tasks, while its decoding is based on the Resource Selection part of
HSAO9Fs.

Our HSA9Fs is a heuristic algorithm, which can only obtain one so-
lution. However, the solution of HSA9Fs lacks the diversity of multi-
objective optimization, so we employ MSSA to pursue this purpose.
HSAO9Fs can intelligently select the task to be scheduled and the VM
to execute that task according to the scheduling situation of multiple
workflows and the current state of the hybrid cloud system. Therefore,
HSAO9Fs has good coverage in the scheduling process (as proven by the
performance results in Section 5.3).

5. Performance evaluation and results
5.1. Simulation environment setup

5.1.1. Resource environment

For public cloud, we use 5 representative VM types from low to high
configuration, as shown in Table 5. The VM configurations and their
processing capacity are based on current Amazon EC2 platform.* The
cold startup time DurC, the warm startup time Dur" and the duration
of stopping Dur? are set to 55.9s, 34.0s and 5.6s, respectively (Sun
et al., 2022). The shortest duration of hibernation Durf is 60.0s. The
minimum gap between two adjacent hibernation in one instance Gap!
is 120s. Unit price of VM in hibernation state M* (only charge for
ElasticIP cost) is 0.005$/h.

4 https://aws.amazon.com/ec2/pricing/on-demand/,
vantage.sh/

https://instances.
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iR

(a) Montage. (b) Epigenomics. (c) Inspiral.

(d) CyberShake.

(e) Sipht.

Fig. 6. Five real-world workflow applications.

For private cloud, we use 3 representative VM types from low to
high configuration, as presented in Table 6. Assume that there are 10
VMs of three types, with 3, 3 and 4 VMs of each type. The VMs are
cold started before executing tasks. Energy consumption is calculated
only for VMs with tasks.

5.1.2. Workflow applications

Five real-world workflow applications with different scales from
different scientific areas are adopted in the simulation (Juve et al.,
2013; Rodriguez & Buyya, 2014; Sahni & Vidyarthi, 2018), as shown in
Fig. 6. All these workflows are generated in the form of Directed Acyclic
Graph in XML (DAX) format by Pegasus WorkflowGenerator (Juve
et al., 2013; Sahni & Vidyarthi, 2018), and are publicly available on
Pegasus website.> These DAX files contain information such as list
of tasks and dependencies between tasks. More details about these
workflows can be found in Juve et al. (2013).

Each workflow type has 4 scales. Fig. 6(a) Montage has 25, 50,
100, 1000 tasks; Fig. 6(b) Epigenomics has 24, 64, 100 and 997 tasks;
Fig. 6(c) Inspiral has 30, 50, 100 and 1000 tasks; Fig. 6(d) CyberShake
has 30, 50, 100 and 1000 tasks; Fig. 6(e) Sipht has 30, 60, 100 and 1000
tasks. Each workflow has 4 deadline factors from loose to tight. Under
each deadline factor, the privacy tag of task is set with a probability of
20%, and it is also generated 4 times. Therefore, the total number of
workflows is 5 x 4 x 4 x 4 = 320.

We randomly choose the different number of workflows as test
problems to simulate the multi-workflows submitted by users, which
are denoted by |G|_Y | A%|. The number of workflows |G| € {3,5,7,10}
and the total number of tasks Y |A¢| < 1000 constitute Medium-Small-
Scale test problems; the number of workflows |G| € {5,15,25} and
the total number of tasks Y |A%| > 1000 constitute Large-Scale test
problems. There are 4 x 2 + 3 x 3 = 17 groups of test problems.

The following rule (Sahni & Vidyarthi, 2018; Wu et al., 2016) is
used to assign a deadline for workflow. We use the maximum execution
&

U(Lf,,) | pp € P! } and the maximum transmission time
h

w

time ﬁf = max {

to estimate start time and finish time:

a"g—mx di ep!
ij = maxq g |Ph

—_ 0, if Pre(a;) =@,
57 = [ Pre(a;)

—g g )
i MaX, epre(a;) {FTj + CTji} , otherwise.

e A A=
FT; = STj +ET;.

5 https://confluence.pegasus.isi.edu/display/pegasus/Deprecated-+
Workflow+Generator
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The deadline is set to:

DLt = Axmax {FT;|af € A%}, (35)

where A € {0.8,1.1,1.5,1.8} is deadline factor.
5.2. Baseline algorithms and evaluation metrics

To evaluate the performance of the proposed algorithms, three state-
of-the-art and related multi-objective workflow scheduling algorithms
are implemented for comparison, including MACO (Li et al., 2019),
GMPSO (Hafsi et al., 2022), GALCS (Xia et al., 2022). The param-
eter configurations of the compared algorithms are all based on the
suggestions in the corresponding references.

+ MACO mainly relies on pheromone matrices and heuristic probability
matrices to generate and update the scheduling solutions. In MACO,
a=1, =10, p=0.2, 0; =10, O, = 0.1, and populationsize = 100.
GMPSO is formed by incorporating NSGAII into MOPSO and applies
a novel solution encoding that represents the task ordering, the task
mapping and the resource provisioning processes of the workflow
scheduling problem in hybrid Clouds. In GMPSO, LeadersSize = 50,
Crossover Probability = MutationProbability = 0.5, GM Parents = 50,
GM Jump = 3, populationsize = 100, C1,C2 € [1.5,2.5] and r1,r2 €
[0,1].

GALCS is combined GA with the longest common subsequence algo-
rithm, aiming to record the favorable gene blocks and to improve the
performance of GA. In GALCS, § = populationsize = 30.

In addition to the above algorithms, we also consider the perfor-
mance comparison with two variant algorithms of MSSA and HSA9Fs.

» MSSA1 is encoded and decoded in the same way as MSIA, but
its population is generated randomly during initialization, i.e., the
solution of HSA9Fs is not used to guide the algorithm search.
MSSA2 is encoded in the same way as MSIA, but decoded using
the following approach: according to the rule of the earliest finish
time (the task will be executed on whichever instance it is finished
the earliest), the private cloud resources will be used first. For non-
sensitive tasks, only when their execution in the private cloud cannot
meet the (sub-)deadline will they lease resources from the public
cloud.

HSAOFs is essentially a heuristic algorithm, which obtains solutions
as feasible solutions. Compared with HSA9Fs, we can evaluate the
performance of our heuristic algorithm and the quality of the initial
solution of MSIA.

Neither MSSA1 nor MSSA2 adopts Algorithm 3 to adapt to the cali-
bration task, and their comparison can evaluate the performance of
our proposed Resource Selection Algorithm 2. Algorithm 2 is also
the decoding method of MSIA. We can evaluate the performance of
HSA9Fs and Algorithm 3 (adaptive calibration task) by comparing
them (MSSA1 and MSSA2) with MSIA. In MSIA, MSSA1 and MSSA2,
populationsize = 30, the total number of iterations |[IR| = 100 and the
maximum number of non-dominated solutions |AS| = 20.

We quote the popular and effective method in Li et al. (2022), Pan
et al. (2021) (merging multiple workflows into one large workflow
by adding two virtual nodes), so that algorithms MACO and GMPSO
can solve multiple workflows. To mitigate the effects of experimental
uncertainty, each algorithm is repeated 10 times. For different test
problems, the given running time of each algorithm is 1.2 x ) |A$|
seconds. All the simulations are conducted in Python and are executed
on a 64 bit PC with Intel Core i5-9500 3.0 GHz, 32 GB RAM and
Ubuntu 20.04.2 LTS. The source codes are publicly available at https:
//doi.org/10.24433/C0.5717787.v2 and https://github.com/zaixing-
sun/MSIA_PMWS_HC_Public.

In this paper, we have two evaluation metrics to measure the
performance of algorithms as follows:

12

Expert Systems With Applications 228 (2023) 120401

(a) HyperVolume (HV) (Chen et al., 2019; Li et al., 2022; Pan et al.,
2021; Saeedi et al., 2020). HV evaluates the diversity and conver-
gence of an evolutionary algorithm. It is obtained by calculating the
volume of the enclosed area between a set of solutions generated
by the algorithm and a reference point, which is usually selected
as the maximum objective values, e.g., the highest Total Tardiness,
Total Energy Consumption and Total Monetary Cost. Specifically,
we utilize Relative Percentage Deviation (RPD, Eq. (36)) to nor-
malize three objectives values of solutions. The reference point
(1.0,1.0,1.0) can, thus, be used for calculating HV. Hence, the
range of HV is [0,1] and a larger HV value is preferable, which
indicates that the obtained set of nondominated solutions is closer
to the Pareto front and has a desired distribution.

fA - fm[n

f max ~ f min ’

where f4 is the solution obtained by algorithm A, and f,,, and

Smax are the minimum and maximum values achieved among all

algorithms, respectively.

Coverage Rate (CR) (Chen et al., 2019; Pan et al., 2021; Wu &

Wang, 2018). This metric is used to compare the archive sets A.S;

and AS,, which reflects the dominance relationship between the

solutions in the two sets. CR is formulated as Eq. (37).

RPD* = (36)

(b)

{x2€ AS;|3x € A5y 1 xy < xl}

CR(AS;, AS,) = (37)

|ASs| '
where CR(AS;, AS,) represents the proportion of solutions in AS,
that are dominated by the solutions in AS;. CR(AS;,ASy) >
CR(AS,, AS,), indicates that AS; is better than AS, in terms of
convergence under the Pareto Optimal metric. In addition, the
value of CR is between 0 and 1, and CR(AS;, ASy)+CR(AS,, AS7)
# 1.

5.3. Performance results

We analyze these results in terms of HyperVolume, Coverage Rate,
running time and number of leased VMs in public cloud. The results
are the mean of 10 runs of algorithms.

5.3.1. Comparison of HyperVolume

Table 7 shows the comparison of HyperVolume by different al-
gorithms. According to the results of HV, MSIA is superior to other
algorithms in 68.42%(13/19) cases. For Medium-Small-Scale, the HV
criterion of MSIA has improved up to 2.13%, 6.42%, 36.80%, 38.14%,
49.13%, and 74.37% respectively, compared to MSSA1l, MSSA2,
GMPSO, HSA9Fs, GALCS, and MACO algorithms. For Large-Scale, the
HV criterion of MSIA has improved up to 1.31%, 15.17%, 19.74%,
26.15%, and 53.18% respectively, compared to MSSAl, GMPSO,
HSA9Fs, MSSA2, and GALCS algorithms. The superiority of MSSA1
over MSSA2 proves the efficiency of Algorithm 2: ResourceSelection,
which is particularly evident on Large-Scale. GMPSO outperforms on
Large-Scale than on Medium-Small-Scale. The reasons for the poor
performance of MACO are: (i) it relies on probability selection and
spends a lot of effort on updating pheromone matrix and probability
matrix; (ii) it is based on the traditional encoding method, and each
individual must repair the violation of task execution constraints. These
reasons make it difficult for MACO to obtain feasible solutions on Large-
Scale within a given time. In addition, based on HSA9Fs, the HV of
MSIA is significantly improved, which indicates MSIA further searches
in the global (MSSA) and local (IGA), yielding results with excellent
diversity and convergence.

To capture the performance difference between the algorithms in-
tuitively, we make a one-way ANOVA of HV results. Fig. 7 shows the
mean plot of HV with 95.0 percent Tukey HSD confidence intervals
for all algorithms. All p-values are less than 0.05 for Medium-Small-
Scale and Large-Scale test problems, indicating that these algorithms
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Table 7
The mean of HyperVolume of different algorithms?.
|GI_Y | A%| MACO® GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA
3.180 0.095 0.530 0.340 0.808 0.974 0.693 0.803
% 3.200 0.142 0.542 0.395 0.982 0.850 0.055 0.985
% 5330 0.104 0.466 0.543 0.884 0.925 0.727 0.900
T 5430 0.086 0.470 0.389 0.911  0.752 0.757 0.952
(% 7391 0.041 0.380 0.236  0.528  0.506 0.212 0.577
5 7.394 0.075 0.397 0.306 0.611 0.418 0.392 0.623
;g 10649 0.001 0.381 0.150 0.877  0.820 0.282 0.904
= 10672 0.002 0.384 0.205  0.722 0.733  0.325 0.750
Avg© 0.068 0.444 0.320 0.790 0.748 0.430 0.812
51230 \P 0.512 0.266  0.654 0.671  0.366 0.592
5.1300 \ 0.436 0.212 0.837 0.797 0.569 0.884
5.3150 \ 0.497 0.328 0.445 0.333 0.326 0.462
< 152656 \ 0.486 0.135 0.860  0.542 0.445 0.852
% 154681 \ 0.564 0.094 0.727  0.350 0.570 0.768
% 15.5585 \ 0.702 0.154 0.769 0.366 0.680 0.811
S 256164  \ 0.573 0.118 0.615  0.309 0.523 0.631
257984 \ 0.505 0.119 0.698  0.242 0.609 0.706
2510878 '\ 0.665 0.092 0.582 0.343 0.439 0.598
Avg*© \ 0.549 0.169 0.688  0.439 0.503 0.701

aBest results are in bold and underlined, and second-best results are in bold.

PMACO cannot output feasible solutions in a given time for large-scale test problems.
Therefore, it is indicated by ‘\’.

€Avg is the average value of the algorithm based on corresponding scale problems.
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Fig. 7. The mean plot of HV with 95.0 percent Tukey HSD confidence intervals.

are statistically significant different at the 95.0% confidence level. For
Medium-Small-Scale, there is no significant difference among MSIA,
MSSA1 and MSA2, but the performance is the best. There was no
significant difference among HSA9Fs, GMPSO and GALCS, but better
than MACO. For Large-Scale, there is no significant difference among
HSA9Fs, GMPSO and MSSA2, but better than GALCS. MSIA and MSSA1,
however, outperform other algorithms significantly at both Medium-
Small-Scale and Large-Scale, owing to our proposed resource selection
method. The performance of MSSA2 dropped obviously on Large-Scale,
indicating that simple rules do not adapt to the complex multi-objective
optimization environments.

To analyze why MSIA performs second-best on the ‘5_3150’ and
25_10878’ test problems, we plot the parallel coordinates of the non-
dominated solutions obtained by the various algorithms for these two
problems, as shown in Fig. 8. According to Fig. 8(a), MSIA is superior
to other algorithms in Total Tardiness and Total Energy Consumption,
and inferior to GALCS in Total Monetary Cost. According to Fig. 8(b),
MSIA is superior to other algorithms in Total Tardiness, and inferior
to GMPSO in Total Monetary Cost and Total Energy Consumption.
Compared with GMPSO, MSIA is only slightly worse in Total Monetary
Cost. In general, MSIA spends more money on these two test problems
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Fig. 8. The Parallel Coordinates Plot of non-dominated solutions obtained from
different algorithms for tri-objective.

in order to complete the workflow as soon as possible. Monetary cost
includes execution cost and communication cost. As HSA9Fs mainly
depends on the time factor during VM selection, ignoring that data
transmission may lead to cost increase.

5.3.2. Comparison of coverage rate

To quantitatively compare the dominance relationships between
MSIA and its peers, we compute Coverage Rate for each test problem,
as shown in Table 8. This table clearly shows that MSIA and HSA9Fs are
superior to other algorithms. Especially, MSIA’s solution can dominate
more than 41% of the solutions of all other algorithms in Medium-
Small-Scale and GMPSO in Large-Scale, but these algorithms rarely
dominate MSIA. Compared with MACO, the Pareto fronts of MSIA and
HSA9Fs can dominate the solution of MACO. Compared with GMPSO,
GMPSO cannot dominate any solution of MSIA and HSA9Fs on all prob-
lems except on ‘5_1230’ and ‘25_10878” where GMPSO can dominate
a few feasible solutions of MSIA and HSA9Fs, while the Pareto front
of both MSIA and HSA9Fs can dominate some solutions of GMPSO by
at least 39% on average. Compared with GALCS, the Pareto front of
MSIA can dominate the solution of GALCS by more than 62% on the
problems of ‘3_200’, ‘5_330’, ‘5_430’, ‘5_1300’ and ‘15_2656’, while they
can barely dominate each other on other problems. There are several
problems in which the solutions of MSSA1 and MSSA2 dominate MSIA’
better than the solutions of MSIA dominate them, but overall MSIA’s
solution still dominates most of the solutions of MSSA1 and MSSA2.
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Table 8
The mean of Coverage Rate of different algorithms®.
IGI_Y | 4¢| MSIA HSA9Fs
MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MACO GMPSO GALCS MSSA1 MSSA2
3.180 0.54/0.00 0.63/0.00 0.11/0.00 0.47/0.25 0.00/0.48 0.25/0.00 0.36/0.00 0.35/0.00 0.07/0.00 0.08/0.25 0.00/0.10
= 3.200 0.84/0.00 0.96/0.00 0.96/0.00 0.58/0.16 0.90/0.10 0.50/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.50 0.00/0.30
@ 5330 0.76,/0.00 0.96/0.00 0.81/0.00 0.74/0.08 0.27/0.08 0.40/0.00 0.44/0.00 0.59/0.00 0.09/0.00 0.07/0.15 0.02/0.10
3 5.430 0.66/0.00 0.98/0.00 0.91/0.00 0.55/0.14 0.94/0.00 0.25/0.00 0.66/0.00 0.98/0.00 0.50/0.00 0.02/0.10 0.60/0.00
u% 7391 0.81/0.00 0.98/0.00 0.00/0.00 0.74/0.07 0.56/0.06 0.50/0.00 0.71/0.00 0.15/0.00 0.00/0.00 0.00/0.50 0.00/0.10
g 7.394 0.77/0.00 0.90/0.00 0.01/0.00 0.56/0.15 0.93/0.00 0.45/0.00 0.77/0.00 0.31/0.00 0.00/0.00 0.00/0.40 0.39/0.00
% 10_649 0.50/0.00 0.93/0.00 0.37/0.00 0.44/0.15 0.24/0.14 0.50/0.00 0.10/0.00 0.09/0.00 0.01/0.00 0.00/0.50 0.00/0.50
= 10.672 0.50/0.00 0.97/0.00 0.10/0.00 0.43/0.18 0.10/0.05 0.50/0.00 0.50/0.00 0.64/0.00 0.00/0.00 0.00/0.50 0.00/0.10
Avg 0.67/0.00 0.92/0.00 0.41/0.00 0.56/0.15 0.49/0.11 0.42/0.00 0.44/0.00 0.39/0.00 0.08/0.00 0.02/0.36 0.13/0.15
51230 \ 0.71/0.02 0.00/0.00 0.19/0.46 0.04/0.29 0.45/0.00 \ 0.20/0.05 0.00/0.00 0.00/0.50 0.00/0.50
51300 \ 0.98/0.00 0.62/0.00 0.33/0.18 0.10/0.35 0.05/0.00 \ 0.97/0.00 0.16/0.00 0.01/0.00 0.00/0.00
53150 \ 0.71/0.00 0.00/0.00 0.43/0.14 0.29/0.01 0.50/0.00 \ 0.34/0.00 0.00/0.00 0.00/0.45 0.01/0.25
-%; 15_2656 \ 0.98/0.00 0.82/0.00 0.29/0.32 0.27/0.00 0.50/0.00 \ 0.38/0.00 0.07/0.00 0.00/0.45 0.00/0.00
@ 15_4681 \ 0.73/0.00 0.00/0.00 0.59/0.09 0.81/0.00 0.00/0.00 \ 0.15/0.00 0.00/0.00 0.01/0.00 0.79/0.00
:g)c 15.5585 \ 0.72/0.00 0.48/0.00 0.52/0.10 0.89/0.00 0.50/0.00 \ 0.43/0.00 0.00/0.00 0.00/0.45 0.03/0.00
3 256164 \ 0.55/0.00 0.00/0.00 0.51/0.08 0.86/0.00 0.45/0.00 \ 0.34/0.00 0.00/0.00 0.00/0.25 0.02/0.00
257984 \ 0.94/0.00 0.00/0.00 0.45/0.16 0.77/0.00 0.45/0.00 \ 0.72/0.00 0.00/0.00 0.00/0.35 0.02/0.00
2510878 \ 0.63/0.16 0.02/0.00 0.39/0.14 0.85/0.00 0.40/0.00 \ 0.28/0.00 0.00/0.00 0.00/0.25 0.72/0.00
Avg \ 0.77/0.02 0.22/0.00 0.41/0.19 0.54/0.07 0.37/0.00 \ 0.42/0.01 0.03/0.00 0.00/0.30 0.18/0.08

2The meaning of value, /value, in the column 'MSIA”: value, is the proportion of MSIA that dominate other algorithms; value, is the proportion of other algorithms that dominate
MSIA. The column 'HSA9Fs’ is similar to this. For example, ’0.54/0.00’ is CR(MSIA,MACO)/CR(MACO,MSIA).

Table 9

Comparisons of running time and numbers of leased public cloud VMs by different algorithms.

G 14¢] Given time Average running time (in second) Average number of leased VMs in public cloud
) a2x145 MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA
3180 212.400 217.325 212.498 221.713 105.708 89.386  0.406  201.730 94 81 42 3 3 4 3
< 3200 240.000 245.243 240.119 248.637 111.978 110.786  0.306  202.954 83 74 42 4 14 4 3
VJLI) 5.330 385.200 422.293 386.774 423.247 219.955 165.763 0.465 370.628 145 128 76 7 12 6 7
T 5430 514.800 576.085 518.474 577.469 471.664 390.386  1.104  472.129 168 152 92 61 41 68 61
u% 7.391 468.000 485.282 471.188 511.530 206.974 174.252  0.448  295.547 86 83 86 21 28 18 20
§ 7_394 470.400  486.405 472.787 524.345 310.539 259.421 0.675 391.558 103 97 85 20 37 26 21
T 10649 778.800 1599.890 795.039 894.866 640.028 565.793  1.861  664.872 122 118 136 66 65 90 61
= 10672 805.200 1763.263 820.746 980.991 598.180 489.887 1.226  728.641 132 127 129 33 54 35 35
Avg 484.350 724.473 489.703 547.850 333.128 280.709  0.811  416.007 117 108 86 27 32 32 27
51230 1474.800 \ 1577.183  2455.390 1384.260 1384.155 11.594 1620.522 \ 457 268 341 344 325 339
51300 1560.000 \ 1642.241 2519.676 1466.746  1466.803 7.601 1477.816 \ 424 224 63 107 51 66
5_3150 3780.000 \ 5865.300 3800.684 3312.600 3310.139 29.513 3426.182 \ 1033 859 268 310 305 275
< 152656 3183.600 \ 3923.040 3202.211 3078.217 3078.223  20.573 3146.233 \ 401 510 190 297 165 175
@ 154681 5575.200 \ 11553.736 12120.123 4727.264 4728.001 43.023 6380.175 \ 720 1681 283 691 315 289
:{o 15.5585 6264.000 \  20205.420 20207.976 6542.074 6540.633 87.052 8520.531 \ 1087 2046 464 887 518 493
S 256164 7316.400 \  24625.647 27993.986 6298.594 6303.554 66.396 9099.503 \ 587 2189 342 778 297 357
257984 9456.000 \ 55773.033 61717.007 8067.333 8080.489 88.754 8669.943 \ 766 2827 406 1507 258 436
2510878  12979.200 \ 119692.641 162276.473 10619.323 10623.857 160.857 11102.164 \ 937 3815 513 1484 320 525
Avg 5732.133 \ 27206.471 32921.503 5055.157 5057.317 57.262 5938.119 \ 713 1603 319 712 284 329

Except for ‘15_4681°, MSIA and HSA9Fs do not dominate each other,
and MSIA’s solution can dominate HSA9Fs’ on other test problems.

5.3.3. Comparisons of running time and numbers of leased public cloud
VMs

Running time is the key efficiency metric to measure the algorithm.
Furthermore, while the PMWS-HC does not limit the numbers of leased
public cloud VMs, employing fewer VMs reduces the possibility of
failure during scheduling based on better balancing the three objectives
considered. Table 9 shows comparisons of running time and numbers
of leased VMs in public cloud by different algorithms.

Running time. Since HSA9Fs is a heuristic algorithm, it is obvious
that its running time is minimal. The running time of MSIA is higher
than MSSA1 and MSSA2 is theoretically known because MSIA uses
HSAO9Fs to generate the initial solution and employs IGA deep search
compared to MSSA1, while MSSA2 uses a simpler decoding method
than MSSA1. For Medium-Small-Scale, the running time of algorithms
MACO, GMPSO, GALCS and MSIA is close to the given time, while
the running times of MSSA1 and MSSA2 algorithms are much less
than the given time because they have reached the given number of
iterations. Particularly, the running time of MACO on ‘10_649’ and
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‘10_672’ is much longer than the given time. This demonstrates that
with the increase of scale, it becomes more difficult for MACO to get
feasible solutions, which also explains why MACO cannot obtain feasi-
ble solutions on Large-Scale. For Large-Scale, as the scale increases, all
algorithms have varying degrees of growth in almost all test problems
when compared with the given running time. The reason lies in that
with the increase of scale, it is difficult for the algorithms to escape the
local optimum in a larger solution space.

Numbers of leased public cloud VMs (We abbreviate it as ‘VMs
counts’.). Since MSIA, MSSA1 and HSA9Fs adopt the same decoding
method (Algorithm 2: ResourceSelection), their VMs counts are close
and almost minimal compared with other algorithms. Since MSSA2
leases public cloud resources only when the sub-deadline is not met,
it uses a similar VMs counts as MSIA on Medium-Small-Scale, but
uses much more VMs counts than MSIA on Large-Scale, which is very
close to GMPSO. This shows that as the number of tasks increases,
it becomes increasingly difficult to complete tasks on time by relying
only on private cloud resources, and the resource selection methods
that do not consider many scheduling factors cannot actively select
the appropriate resources. The resource selection methods of MACO,
GMPSO, and GALCS all have random characteristics and do not design
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unique evolutionary mechanisms for resource selection, so they always
have a higher VMs counts.

To summarize, the experimental results show that MSIA outper-
forms other algorithms in terms of the diversity and convergence of
solutions, as well as the running time and the numbers of leased public
cloud VMs. That is, the MSIA can better simultaneously trade off the
considered three objectives.

6. Conclusion

In this paper, we propose a nested algorithm MSIA for tri-objective
privacy-aware multi-workflow scheduling in hybrid cloud (PMWS-HC).
To solve PMWS-HC, we devise a novel Heuristic Scheduling Algorithm
based on 9 Factors (HSA9Fs), which makes the scheduling compact and
non-greedy by comprehensively considering various factors such as cur-
rent completion times, urgency, sub-deadline, and etc. For trading off
the three objectives considered, we employ MSSA to search Pareto so-
lution globally, and IGA to search deeply in the neighborhoods of indi-
vidual to improve the quality of the solution. Extensive Medium-Small-
Scale and Large-Scale simulation experiments and comparisons demon-
strate that HSA9Fs and MSIA outperform state-of-the-art scheduling
algorithms in several evaluation metrics. In the future work, we intend
to apply HSA9Fs and MSIA in real-time multi-workflow scheduling.
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