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A B S T R A C T

Benefiting from the flexible, scalable and secure environment, hybrid cloud can overcome the shortage of
limited resources in private cloud to simultaneously execute large-scale scientific workflows. In hybrid cloud,
privacy-sensitive tasks are not allowed to be executed on public resources, while non-sensitive tasks are
unrestricted. As an NP-Complete problem, it is extraordinarily challenging to schedule multiple workflows
efficiently, economically and energy-savingly under quality-of-service constraints. This paper models the
hybrid-cloud-based privacy-aware multi-workflow scheduling as a tri-objective optimization problem that
optimizes workflow-oriented total tardiness, private-cloud-oriented total energy consumption, and public-
cloud-oriented total monetary cost. To the best of authors’ knowledge, few studies have been conducted on
the tri-objective privacy-aware multi-workflow scheduling in hybrid cloud (PMWS-HC). To solve this problem,
we dissect various factors involved during task scheduling and devise a novel Heuristic Scheduling Algorithm
based on 9 Factors (HSA9Fs), which dynamically selects the workflows and tasks to be scheduled, and the
corresponding VMs to execute them. To optimize the three conflicting objectives simultaneously, we propose
a nested algorithm called MSIA, which first employs a Multi-objective Salp swarm algorithm to explore for
the Pareto solutions, and then uses an Iterative greedy Algorithm to perform a refined search on individuals
to obtain high-quality solutions. Extensive Medium-Small-Scale and Large-Scale simulation experiments show
that both HSA9Fs and MSIA outperform state-of-the-art scheduling algorithms in several multi-objective
performance metrics.
1. Introduction

Hybrid cloud is a primary computing paradigm that enables isola-
tion, sharing, processing and storing of resources across private and
public clouds to control costs and achieve an optimal balance among
privacy, scalability and elasticity. Based on this, enterprises can choose
whenever and wherever to host and process data to satisfy performance
and cost requirements. Furthermore, the enterprises with hybrid cloud
can quickly adapt to business and technological changes. Therefore,
how to efficiently manage hybrid cloud resources and schedule tasks
with users’ requirements is an urgent issue to address.

✩ This work is financially supported by Shenzhen Science and Technology Program, China under Grant No. GXWD20220817124827001 and No.
JCYJ20210324132406016, National Natural Science Foundation of China under Grant No. 61732022, and Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies, China under Grant No. 2022B1212010005.
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drtxie@gmail.com (R. Xie), bin.qian@vip.163.com (B. Qian).

Workflow originates from the manufacturing industry and has been
widely applied in IT, management, transportation and other indus-
tries (Deelman et al., 2009; van der Aalst & van Hee, 2004). Nowadays,
scientific workflow is growing increasingly complicated, with hundreds
or even thousands of various types of tasks with dependencies (Chen
et al., 2019; Qin et al., 2022). Workflow applications typically have
deadline constraints and need a large amount of computing resources
to process. Furthermore, certain tasks, such as sensitive tasks of user
information, financial or medical information related to privacy, must
be executed on devices with high security. In reality, such sensitive
tasks have been widespread (Ali et al., 2015; Mthunzi et al., 2020).
The privacy-aware workflow is more suitable for execution in hybrid
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cloud and has been preliminary studied (Lei et al., 2022; Sharif et al.,
2017; Wen et al., 2020). For hybrid cloud, users must perform sensitive
tasks in private cloud. When private resources are insufficient to meet
quality of service (QoS) for non-sensitive tasks, near-unlimited public
cloud resources can be rented on demand (Yuan et al., 2017). Cloud
computing, as we all know, is a multi-user platform that can manage
workflows submitted by multiple users simultaneously, leading to the
emergence of Workflow as a Service (Hilman et al., 2020; Zhou et al.,
2016). Compared with single workflow scheduling, the advantage of
multiple workflow scheduling lies in sharing and reusing idle time
slots. However, under the heterogeneous computing environment and
different QoS constraints, multi-workflow scheduling becomes more
complicated and difficult.

This paper focuses on privacy-aware multi-workflow scheduling in
hybrid cloud (PMWS-HC), which is to schedule each task in workflows
to an appropriate resource for satisfying some performance criteria.
First, tardiness is a delay penalty if the workflow is completed after
its deadline (Rimal & Maier, 2017). It is usually used to measure the
time efficiency of executing a workflow. Since workflow scheduling
problem has NP-complete property (Mohammad Hasani Zade et al.,
2021; Wu & Wang, 2018; Xia et al., 2022) and it can be reduced
to PMWS-HC, PMWS-HC is also NP-complete. Second, minimizing the
cost of leasing public cloud resources under deadline constraints is an
essential economic metric. A task being assigned to a high-capacity
resource type usually involves a lower execution time and higher cost.
Furthermore, when more VMs are used, tasks are scattered over VMs,
increasing the idle time of VMs and data transmission time among tasks.
Third, minimizing energy consumption has always been a significant
issue that cannot be ignored in data centers. Tasks being assigned to
low configuration resource types usually take longer to execute and
consume less energy. Obviously, minimizing tardiness, leasing cost and
energy consumption are three conflicting objectives, so PMWS-HC is a
multi-objective optimization problem (MOP).

In recent decades, MOP is usually solved by evolutionary algo-
rithms. The concept of Pareto domination is generally used in MOP to
reflect the simultaneous trade-off among multiple objectives. Among
the studies related to PMWS-HC, there are some studies (Pasdar et al.,
2020; Rimal & Maier, 2017; Wang et al., 2021) that evaluate the
algorithm performance on each objective separately. In this way, their
algorithm is still a single-objective optimization algorithm, and cannot
trade off multiple objectives simultaneously. Other studies (Hafsi et al.,
2022; Li et al., 2022, 2019; Wang & Zuo, 2021; Xia et al., 2022; Zhou
et al., 2019) directly specify the resources to execute tasks, ignoring the
characteristics of workflow scheduling. This method relies entirely on
algorithmic optimization and cannot proactively select the workflow
and its tasks to be scheduled, as well as the resources needed to
execute the task. Though there exist some studies (Chen et al., 2019;
Saeedi et al., 2020; Wen et al., 2020) that involve simple rules to
make decisions, they are limited to the initialization of algorithm, while
the aforementioned decisions are still not proactively made during the
optimization of the algorithm. There are many factors that should not
be ignored during workflow scheduling. These factors can help us make
decisions, such as (1) unscheduled tasks: their tightness relative to the
deadline affects which task or workflow is scheduled first; (2) the task’s
actual available time: it will vary on different VMs and determine the
task’s actual start time, and it affects whether the scheduling scheme
is compact or meets the QoS; (3) dependency between tasks: deploying
a task to the VM that executes its parent task can save transmission
time. Such factors need to be further explored and fully utilized to make
scheduling decisions, but none of the existing studies have done so.

In order to make scheduling decisions proactively, we dissect the
scheduling process to extract 9 influencing factors (i.e., unscheduled
levels, current completion times, workflow deadline, existing schedul-
ing results, urgency, sub-deadline, Earliest Available Time, Actual
2

Available Time, and the maximum completion time of all scheduled
tasks). Based on this, we devise a novel Heuristic Scheduling Algo-
rithm based on 9 Factors (HSA9Fs), which can overcome the above
shortcomings of the existing algorithms. The heuristic algorithm has
a limited search space due to its strong regularity, whereas MOP has
many non-dominated solutions. Therefore, employing the global search
capabilities of evolutionary algorithm, we propose a nested algorithm
of Multi-objective Salp swarm algorithm (MSSA) (Mirjalili et al., 2017)
and Iterative greedy Algorithm (IGA) (Ruiz & Stützle, 2007), named
MSIA, to further tackle this problem. Since MSIA’s decoding is based on
HSA9Fs which can quickly evaluate individuals, MSIA can solve large-
scale problems. To the best of our knowledge, few studies have been
conducted on the tri-objective PMWS-HC. Our main contributions are
listed as follows:

• We establish a hybrid-cloud-based privacy-aware multi-workflow
scheduling model, which simultaneously considers minimizing
workflow-oriented total tardiness, private-cloud-oriented total en-
ergy consumption and public-cloud-oriented total monetary cost.

• By dissecting various factors involved during scheduling, we cre-
atively propose HSA9Fs, which dynamically selects the workflows
and tasks to be scheduled and the VMs to be executed. Our scheme
is non-greedy and can schedule tasks compactly by comprehensively
considering 9 factors.

• To explore Pareto solutions for trading off the tri-objective consid-
ered, we exploit MSSA to search Pareto solution globally to achieve
the joint optimization of efficiency, economy and energy-savingly
and IGA to deeply search in the neighborhoods of individual to
improve the quality of the solution.

• We conduct extensive Medium-Small-Scale and Large-Scale simu-
lation experiments based on five well-known real-world workflow
applications to investigate the diversity, convergence and efficiency
of the proposed algorithms. The results show that both HSA9Fs and
MSIA outperform state-of-the-art scheduling algorithms in several
multi-objective performance metrics.

The organization of this paper is as follows: In Section 2, we re-
view the related work on privacy-aware workflow and multi-objective
workflow scheduling. In Section 3, we present the cloud workflow
scheduling model. In Section 4, the proposed HSA9Fs and MSIA are
presented in detail. Section 5 verifies the performance of the proposed
algorithms. Section 6 concludes the paper.

2. Related work

Security and privacy protection have become key issues in cloud
environments (Mthunzi et al., 2020; Ren et al., 2019). As a typical
cloud application, workflow scheduling also has related issues and
some research as reported in Hu et al. (2020), Lei et al. (2022), Li et al.
(2016). Li et al. (2016) considered security overhead model and made
risk analysis for workflow, and proposed a security and cost aware
scheduling algorithm for workflow in public cloud, which tried to
minimize the total workflow execution cost while meeting the deadline
and risk rate constraints. Hu et al. (2020) considered a privacy-aware
Spark application scheduling problem in hybrid cloud and proposed a
scheduling algorithm SSPPH (Spark Scheduling with Privacy Protection
in a Hybrid Cloud) to minimize the total rental cost. Spark application is
modeled as a two-layer topological structure. Lei et al. (2022) proposed
two scheduling heuristics for privacy and security-aware workflow
scheduling in hybrid cloud to optimize the cost under the constraints
of deadline and privacy. They developed a hybrid encryption method
based on three levels constraints to ensure data transmission security.

These previous studies focused on single-objective optimization,
but there are also related investigations involving multi-objective op-
timization. Wang et al. (2021) considered security-aware bag-of-tasks
scheduling problem in hybrid cloud. They proposed a heuristic task

scheduling method concerning Security and evaluated the method on
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Table 1
Comparison of related works for workflow scheduling problem.

Ref. Workflow model Resource model Optimization model Problem’s characteristics

Li et al. (2016) Single workflow Public cloud 1: Cost Security overhead model and workflow risk analysis.
Hu et al. (2020) Spark application Hybrid cloud 1: Cost Privacy tasks can only be executed on private cloud resources.
Lei et al. (2022) Single workflow Hybrid cloud 1: Cost Encryption and decryption processes are integrated into the

scheduling model, which is similar to the transmission time.
Rimal and Maier
(2017)

Multi-workflow Public cloud a: Makespan, Tardiness and
Resource utilization rate

The cost of data transmission is not considered.

Pasdar et al. (2020) Single workflow Hybrid clouds a: Cost and Makespan Overall execution cost depends on the cost of used storage,
consumed bandwidth, and computation in public cloud.

Wang et al. (2021) Bag-of-tasks Hybrid clouds a: Cost, The number of finished
tasks and Energy

Each task has corresponding deadline and security level constraints,
and a security model is established.

Wen et al. (2020) Single workflow Public clouds 2: Cost and Makespan The multi-data center model and storage cost are considered.
Hafsi et al. (2022),
Zhou et al. (2019)

Single workflow Hybrid clouds 2: Cost and Makespan Trade-off between makespan and cost.

Xia et al. (2022) Single workflow Private cloud 2: Makespan and Energy Trade-off between makespan and energy consumption.
Li et al. (2019) Multi-workflow Public cloud 3: Cost, Makespan and Service quality Task scheduling in cloud manufacturing; Maximize service quality.
Li et al. (2022) Multi-workflow Hybrid clouds 3: Cost, Makespan and Energy Both on-demand and reserved instance types are considered; Energy

saving by Dynamic Voltage Frequency Scaling.
Saeedi et al. (2020) Single workflow Public cloud 4: Cost, Makespan, Energy and Reliability Energy consumption only considers dynamic energy consumption.

aThis multi-objective optimization problem does not evaluate the performance of the algorithm through the non-dominated solution, but each objective is evaluated and analyzed
separately.
metrics such as makespan, cost efficiency and energy efficiency. Pas-
dar et al. (2020) proposed a two-stage algorithm to minimize exe-
cution time and cost: it first generated an initial scheduling strat-
egy based on an extended genetic algorithm (GA) and then dynam-
ically adjusted reschedule some tasks in response to volatile execu-
tion environments. Rimal and Maier (2017) proposed a cloud-based
workflow scheduling policy for batch compute-intensive workflows
in multi-tenant cloud computing. They evaluated the proposed algo-
rithm in terms of makespan, tardiness and resource utilization rate,
and etc. However, the above works are limited to evaluating the
considered objectives separately, rather than trading off multiple ob-
jectives. Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2002) is a classical Pareto-Dominance-based multi-objective
optimization algorithm. Wen et al. (2020) proposed a multi-objective
scheduling algorithm based on GA for workflow scheduling with pri-
vacy protection constraints. The trade-off objectives are makespan and
monetary cost. Based on many-objective particle swarm optimization
(MaOPSO) (Figueiredo et al., 2016), Saeedi et al. (2020) proposed an
improved MaOPSO to optimize multiple conflicting objectives includ-
ing maximization of reliability and minimization of cost, makespan
and energy consumption. Zhou et al. (2019) and Hafsi et al. (2022)
proposed multi-objective approach named MOH (Multi-objective Opti-
mization for Hybrid clouds) and Genetically-modified Multi-objective
Particle Swarm Optimization (GMPSO), respectively, to simultaneously
optimize makespan and cost in hybrid clouds. Xia et al. (2022) pro-
posed a multi-objective GA combined with longest common subse-
quence, named GALCS, to simultaneously optimize makespan and en-
ergy consumption in heterogeneous cloud. Integrated longest common
subsequence can record the beneficial gene blocks and increase GA
performance.

There are also a few works focusing on multi-objective multi-
workflow scheduling. Li et al. (2019) proposed two multi-objective
algorithms, ant colony optimization-based multi-objective algorithm
(MACO) and NSGA-II-based multi-objective algorithm (MGA), to solve
the multi-task scheduling in cloud manufacturing. They developed a
model for scheduling many heterogeneous complicated tasks while
taking into account three objectives: makespan, total cost, and to-
tal service quality. In their model, each task is represented by a
DAG (Directed Acyclic Graph), and all tasks are available at the
beginning with the same priorities. Therefore, it can be regarded as
a tri-objective multi-workflow scheduling problem. Li et al. (2022)
proposed a Chaotic-nondominated-sorting Owl Search Algorithm to
solve multi-workflow scheduling in hybrid clouds. The optimization
objective was to minimize makespan, cost and energy consumption
3

simultaneously under the deadline and budget constraints. They con-
sidered both reserved and on-demand pricing models in the public
cloud and utilized Dynamic Voltage Frequency Scaling to reduce energy
consumption and save costs. Pan et al. (2021) proposed a Multi-
objective Clustering Evolutionary Algorithm (based on Strength Pareto
Evolutionary Algorithm He et al., 2017) for multi-workflow scheduling
under deadline constraint in Mobile Edge Computing to minimize the
cost and energy consumption.

The details of the above related works for workflow scheduling
problem are tabulated in Table 1.

3. Cloud workflow scheduling model

Fig. 1 presents a multi-workflow scheduling framework in hybrid
cloud. Users submit workflows through the Workflow as a Service
Portal within a certain time interval. The Cloud Resource Manager
monitors the resources in hybrid cloud, and then cooperates with the
Task Scheduler to complete the tasks-to-resources mapping, and feeds
back the scheduling results to users. Task scheduler is the core of
the framework. This paper focuses on the tri-objective optimization of
offline multi-workflow in hybrid cloud. The preemption of tasks is not
allowed.

This section first introduces the structure and data related to work-
flow application, and then introduces the different configurations of
public cloud and private cloud, and finally constructs a tri-objective
multi-workflow scheduling model through workflow scheduling anal-
ysis. Table 2 summarizes the symbols used in this section to improve
readability.

3.1. Privacy-aware multi-workflow applications model

In cloud, a set of workflow applications can be represented as 𝐺 =
{

𝐺𝑔|
|

|

𝑔 = 1,2,… , |𝐺|

}

, which 𝐺𝑔 = (𝐴𝑔 ,𝑊 𝑔 , 𝐸𝑔 , 𝐷𝑔 , 𝛷𝑔) is the DAG
description of a workflow.

• 𝐴𝑔 =
{

𝑎𝑔𝑖
|

|

|

𝑖 = 1,2,… , |𝐴𝑔
|

}

is the set of tasks, where 𝑎𝑔𝑖 denotes a
task in workflow 𝐺𝑔 and |𝐴𝑔

| denotes the total number of tasks in
the workflow.

• 𝑊 𝑔 =
{

𝑤𝑔
𝑖
|

|

|

𝑎𝑔𝑖 ∈ 𝐴𝑔
}

is the set of weights on tasks, which denotes
the computation of tasks in giga floating point operations (GFLOP).

• 𝐸𝑔 =
{

𝑒𝑔𝑖𝑗 =
(

𝑎𝑔𝑖 , 𝑎
𝑔
𝑗

)

|

|

|

𝑎𝑔𝑖 , 𝑎
𝑔
𝑗 ∈ 𝐴𝑔 ; 𝑖 < 𝑗

}

is the set of data depen-

dency constraints between tasks. Let 𝑆𝑢𝑐(𝑎𝑔𝑖 ) =
{

𝑎𝑔𝑗
|

|

|

𝑒𝑔𝑖𝑗 ∈ 𝐸𝑔
}

and

𝑃𝑟𝑒(𝑎𝑔𝑖 ) =
{

𝑎𝑔𝑗
|

|

|

𝑒𝑔𝑗𝑖 ∈ 𝐸𝑔
}

be the sets of all immediate successors and
predecessors of task 𝑎𝑔 , respectively. A task 𝑎𝑔 cannot be started
𝑖 𝑖
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Fig. 1. Multi-workflow scheduling framework in hybrid cloud. represents that the
task is private sensitive.

unless all of its immediate predecessors (i.e. 𝑃𝑟𝑒(𝑎𝑔𝑖 )) have finished its
execution and the relevant data dependencies have been transmitted
to 𝑎𝑔𝑖 .

• 𝐷𝑔 =
{

𝑑𝑔𝑖𝑗
|

|

|

𝑒𝑔𝑖𝑗 ∈ 𝐸𝑔
}

is the set of transmitted data, where 𝑑𝑔𝑖𝑗 is the
volume of data to be transmitted from task 𝑎𝑔𝑖 to task 𝑎𝑔𝑗 , in GFLOP.

• 𝛷𝑔 =
{

𝜙𝑔
𝑖
|

|

|

𝜙𝑔
𝑖 ∈ {0,1} , 𝑎𝑔𝑖 ∈ 𝐴𝑔

}

is the set of privacy tags for tasks. If
𝜙𝑔
𝑖 = 1, it means that task 𝑎𝑔𝑖 contains private data and can only be

deployed on resource instances in private cloud; Otherwise, it can be
deployed on resource instances in private or public clouds.

3.2. Hybrid cloud model

Hybrid cloud is made up of two cloud data centers: public cloud
and private cloud. The computing resources in both data centers are
in the form of virtual machines (VMs) or instances. Generally, private
cloud provides a fixed number of VMs, whereas public cloud provides
an ‘‘unlimited’’ number of VMs.

3.2.1. Public cloud
In public cloud, VM instances have the following characteristics:

processing capacity, network bandwidth, leasing price. Let 𝑃 0 =
{

𝑝0
𝑘
|

|

|

𝑘 = 1,2,… , ||
|

𝑃 0|
|

|

}

denote the set of all instance types in public
cloud, where |

|

|

𝑃 0|
|

|

is the total number of types.

• 𝑈 =
{

𝑈 (𝑝0
𝑘)
|

|

|

𝑝0
𝑘 ∈ 𝑃 0

}

is the set of processing capacity of CPU in
Giga Floating Point Operations Per Second (GFLOPS, a widely used
metric Rodriguez & Buyya, 2014; Sahni & Vidyarthi, 2018), where
𝑈 (𝑝0

𝑘) is the processing capacity of instance type 𝑝0
𝑘.

• 𝐵 =
{

𝐵(𝑝0
𝑘 , 𝑝

0
ℎ)
|

|

|

𝑝0
𝑘 , 𝑝

0
ℎ ∈ 𝑃 0

}

is the set of communication bandwidth
between different instance types. 𝐵(𝑝0

𝑘 , 𝑝
0
ℎ) is the communication

bandwidth between instance type 𝑝0
𝑘 and 𝑝0

ℎ, which depends on the
smaller bandwidth of the two instances (denoted as 𝑏(𝑝0

𝑘) and 𝑏(𝑝0
ℎ),

respectively). That is, 𝐵(𝑝0
𝑘 , 𝑝

0
ℎ) = min

{

𝑏(𝑝0
𝑘), 𝑏(𝑝

0
ℎ)
}

.
• 𝑀 =

{

𝑀(𝑝0
𝑘)
|

|

|

𝑝0
𝑘 ∈ 𝑃 0

}

is the set of leasing prices, where 𝑀(𝑝0
𝑘) is

the per-unit price of instance type 𝑝0
𝑘.

• �⃗� is the price of transmitting unit data. In general, public clouds
charge their network resources only for the data transferred out,1.

1 https://www.aliyun.com/product/ecs https://aws.amazon.com/cn/ec2/
pricing/on-demand/
4

Table 2
Symbols and meanings.

Symbola Explanation

Multiple Workflows
𝐺𝑔 A workflow, 𝐺𝑔 ∈ 𝐺.

𝑎𝑔𝑖 A task in workflow 𝐺𝑔 , 𝑎𝑔𝑖 ∈ 𝐴𝑔 .

𝑤𝑔
𝑖 The weight of task 𝑎𝑔𝑖 , 𝑤

𝑔
𝑖 ∈ 𝑊 𝑔 .

𝑒𝑔𝑖𝑗 Data dependency between task 𝑎𝑔𝑖 and 𝑎𝑔𝑗 , 𝑒
𝑔
𝑖𝑗 ∈ 𝐸𝑔 .

𝑆𝑢𝑐(𝑎𝑔𝑖 ) All immediate successors of task 𝑎𝑔𝑖 .

𝑃𝑟𝑒(𝑎𝑔𝑖 ) All immediate predecessors of task 𝑎𝑔𝑖 .

𝑑𝑔
𝑖𝑗 The volume of data to be transferred from task 𝑎𝑔𝑖 to task 𝑎𝑔𝑗 , 𝑑

𝑔
𝑖𝑗 ∈ 𝐷𝑔 .

𝜙𝑔
𝑖 The privacy tag of task 𝑎𝑔𝑖 , 𝜙

𝑔
𝑖 ∈ {0,1}, 𝜙𝑔

𝑖 ∈ 𝛷𝑔 .

Hybrid Cloud

𝑝0
𝑘 An instance type in public cloud, 𝑝0

𝑘 ∈ 𝑃 0.

𝑝1
𝑘 An instance type in private cloud, 𝑝1

𝑘 ∈ 𝑃 1.

𝑃 All instance type in hybrid cloud, 𝑃 = 𝑃 0 ∪ 𝑃 1.

𝑈 (𝑝0
𝑘) The processing capacity of instance type 𝑝0

𝑘 .

𝐵(𝑝0
𝑘 , 𝑝

0
ℎ) The bandwidth between instance type 𝑝0

𝑘 and 𝑝0
ℎ.

𝑀(𝑝0
𝑘) The per-unit price of instance type 𝑝0

𝑘 .

�⃗� The price of transmitting unit data.

𝑀𝐻 The per-unit price in Hibernation state.

�̄�(𝑝1
𝑘) The idle power of instance type 𝑝1

𝑘 .

�̃�(𝑝1
𝑘) The dynamic power of instance type 𝑝1

𝑘 .

�⃗� The transmission power of router.

Scheduling Model

𝑣ℎ An instances leased by users, 𝑣ℎ ∈ 𝑉 .

𝜂ℎ The mapping relationship between VM 𝑣ℎ and data centers, 𝜂ℎ ∈ {0,1}.

𝑣𝑃ℎ The instance 𝑣ℎ ’s type, 𝑣𝑃ℎ ∈ 𝑃 .

𝜁𝑔𝑖ℎ The mapping relationship between task 𝑎𝑔𝑖 and VM 𝑣ℎ, 𝜁𝑔𝑖ℎ ∈ {0,1}.

𝐸𝑇 𝑔
𝑖ℎ The execution time of task 𝑎𝑔𝑖 on VM 𝑣ℎ.

𝐶𝑇 𝑔,𝑘ℎ
𝑖𝑗 The communication time when tasks 𝑎𝑔𝑖 and 𝑎𝑔𝑗 are assigned to VMs 𝑣𝑘

and 𝑣ℎ, respectively.

𝐹𝑇 𝑔
𝑖 The actual finish time of task 𝑎𝑔𝑖 .

𝑆𝑇 𝑔
𝑖 The actual start time of task 𝑎𝑔𝑖 .

𝐶𝑔 The complete time of workflow 𝐺𝑔 .

T𝑔 The tardiness of workflow 𝐺𝑔 .

𝐷𝐿𝑔 The deadline of workflow 𝐺𝑔 .

T The total tardiness of multi-workflow.

�̃�𝑔
𝑖ℎ The energy consumption of task 𝑎𝑔𝑖 .

Ẽ The total dynamic energy consumption.

Ē The total static energy consumption.

�⃗�𝑔,𝑘ℎ
𝑖𝑗 The communication energy consumption between task 𝑎𝑔𝑖 and 𝑎𝑔𝑗 .

E⃗ The total communication energy consumption.

E The total energy consumption.

𝑆𝑇 ℎℏ The ℏ-th start time of the rented VM 𝑣ℎ in running state.

𝐹𝑇 ℎℏ The ℏ-th end time of the rented VM 𝑣ℎ in running state.

𝑆𝑇
𝐻
ℎℏ′ The ℏ′-th start time of the rented VM 𝑣ℎ in hibernate state.

𝐹𝑇
𝐻
ℎℏ′ The ℏ′-th end time of the rented VM 𝑣ℎ in hibernate state.

M̃ The total rental cost.

M⃗𝑔,𝑘ℎ
𝑖𝑗 The communication cost between task 𝑎𝑔𝑖 and 𝑎𝑔𝑗 .

M⃗ The total communication cost.

M The total monetary cost.

𝙰𝚂 The non-dominated solution set/archive set.

aIn this table, 𝑔 = 1,2,… , |𝐺|; 𝑖, 𝑗 = 1,2,… , |𝐴𝑔
|; Instance type index 𝑘, ℎ =

1,2,… , |
|

𝑃 0
|

|

(or |
|

𝑃 1
|

|

); Instance index 𝑘, ℎ = 1,2,… , |𝑉 |.

The pricing model is based on an on-demand billing scheme and the
minimum billing period is 1 s with a mandatory-minimum of 60 s.
As in Sun et al. (2022), we consider cold startup time, warm startup
time and hibernation state. Cold startup time refers to the initial boot

https://www.aliyun.com/product/ecs
https://aws.amazon.com/cn/ec2/pricing/on-demand/
https://aws.amazon.com/cn/ec2/pricing/on-demand/
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time after the instance is leased, during which instance initialization
and task mirror deployment are performed. Warm startup time refers
to the restart time after hibernation, which is less than the cold startup
time. Hibernation state refers to the state of suspend-to-disk operating
system for which a lower per-unit price, denoted as 𝑀𝐻 , is charged.

3.2.2. Private cloud
Let 𝑃 1 =

{

𝑝1
𝑘
|

|

|

𝑘 = 1,2,… , ||
|

𝑃 1|
|

|

}

denote the set of all instance types
in private cloud, where |

|

|

𝑃 1|
|

|

is the total number of types. An instance
has the following characteristics:

• The definition of processing capacity and bandwidth is the same as
that of public cloud.

• �̄� =
{

�̄�(𝑝1
𝑘)
|

|

|

𝑝1
𝑘 ∈ 𝑃 1

}

is the set of idle power, where �̄�(𝑝1
𝑘) is the idle

power of instance type 𝑝1
𝑘.

• �̃� =
{

�̃�(𝑝1
𝑘)
|

|

|

𝑝1
𝑘 ∈ 𝑃 1

}

is the set of dynamic power, where �̃�(𝑝1
𝑘) is

the dynamic power of instance type 𝑝1
𝑘.

• �⃗� is the transmission power of router. Suppose routers have the same
power, regardless of the network topology.

There is a limit to the number of instances in private cloud. It is
assumed that the instances of private cloud can be obtained and used
at any time until all tasks are finished. However, it still takes time to
deploy the task execution scenario or initialize instance, assuming that
the time is the same as the cold startup time in public cloud. Assume
that hybrid cloud has enough memory to execute workflows.

3.3. Problem formulation

Let 𝑉 =
[

𝑣1, 𝑣2,… , 𝑣
|𝑉 |

]

be the VM instances used by all users,
where |𝑉 | is the total number of VMs. Let 𝜂ℎ ∈ {0,1} be the mapping
relationship between VMs and data centers. 𝜂ℎ = 1 indicates that 𝑣ℎ is
in private cloud, otherwise it is in public cloud.

𝜂ℎ =

{

1, 𝑣ℎ is in private cloud,
0, 𝑣ℎ is in public cloud.

(1)

𝑣𝑃ℎ ∈ 𝑃 (𝑃 = 𝑃 0 ∪ 𝑃 1) is instance 𝑣ℎ’s type. Thus, 𝑈 (𝑣𝑃ℎ ) is instance
𝑣ℎ’s processing capacity. 𝑀(𝑣𝑃ℎ ) is instance 𝑣ℎ’s per-unit price. The
parameters of the corresponding power are the same.

Let 𝜁𝑔𝑖ℎ ∈ {0,1} be the mapping relationship between tasks and VMs,
where 𝜁𝑔𝑖ℎ = 1 if task 𝑎𝑔𝑖 is assigned to 𝑣ℎ, otherwise it is 0.

𝜁𝑔𝑖ℎ =

{

1, task 𝑎𝑔𝑖 is assigned to 𝑣ℎ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

We need to ensure that each task is scheduled only once. At the same
time, when a task has a private property, it should be deployed in a
private cloud. The corresponding constraint is shown in Eq. (3).
{

∑

𝑣ℎ∈𝑉 𝜁𝑔𝑖ℎ × 𝜂ℎ = 1, 𝜙𝑔
𝑖 = 1,

∑

𝑣ℎ∈𝑉 𝜁𝑔𝑖ℎ = 1, 𝜙𝑔
𝑖 = 0.

(3)

3.3.1. Total tardiness
The total tardiness is the sum of tardiness of all workflows. The

execution time of task 𝑎𝑔𝑖 on VM 𝑣ℎ is

𝐸𝑇 𝑔
𝑖ℎ =

𝑤𝑔
𝑖

𝑈 (𝑣𝑃ℎ )
× 𝜁𝑔𝑖ℎ, (4)

When tasks 𝑎𝑔𝑖 and 𝑎𝑔𝑗 are assigned to VMs 𝑣𝑘 and 𝑣ℎ, respectively, their
communication time is

𝐶𝑇 𝑔,𝑘ℎ
𝑖𝑗 =

⎧

⎪

⎨

⎪

𝑑𝑔𝑖𝑗
𝐵(𝑣𝑃𝑘 , 𝑣

𝑃
ℎ )

× 𝜁𝑔𝑖𝑘 × 𝜁𝑔𝑗ℎ, 𝑣𝑘 ≠ 𝑣ℎ, (5)
5

⎩

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
When 𝑣𝑘 equals to 𝑣ℎ, the communication time on the same VM is 0.
he precedence constraint between tasks is as follows:

𝑇 𝑔
𝑖 + 𝐶𝑇 𝑔,𝑘ℎ

𝑖𝑗 ≤ 𝑆𝑇 𝑔
𝑗 , 𝑒𝑖𝑗 ∈ 𝐸𝑔 , (6)

𝐹𝑇 𝑔
𝑖 = 𝑆𝑇 𝑔

𝑖 +
∑

𝑣ℎ∈𝑉
𝐸𝑇 𝑔

𝑖ℎ, 𝑎𝑖 ∈ 𝐴𝑔 , (7)

where 𝐹𝑇 𝑔
𝑖 denotes the actual finish time of task 𝑎𝑔𝑖 , and 𝑆𝑇 𝑔

𝑗 denotes
he actual start time of task 𝑎𝑔𝑗 . The complete time of workflow 𝐺𝑔 is
𝑔 = max𝑎𝑖∈𝐴𝑔

{

𝐹𝑇 𝑔
𝑖
}

. The makespan of multi-workflow scheduling is
𝑚𝑎𝑥 = max𝐺𝑔∈𝐺 {𝐶𝑔}. The tardiness of workflow 𝐺𝑔 is
𝑔 = max {0, 𝐶𝑔 −𝐷𝐿𝑔} , (8)

here 𝐷𝐿𝑔 is the deadline of workflow 𝐺𝑔 .
The total tardiness of multi-workflow is

T =
∑

𝐺𝑔∈𝐺
T𝑔 . (9)

3.3.2. Total energy consumption
The total energy consumption includes the dynamic energy con-

sumption during the task execution in private cloud, the static energy
consumption during standby, and the communication energy consump-
tion during data transmission within the private cloud and across data
centers. The energy consumption for executing task 𝑎𝑔𝑖 is
̃ 𝑔
𝑖ℎ = 𝐸𝑇 𝑔

𝑖ℎ × �̃�(𝑣𝑃ℎ ) × 𝜁𝑔𝑖ℎ × 𝜂ℎ.

he total dynamic energy consumption is
̃ =

∑

𝐺𝑔∈𝐺

∑

𝑣ℎ∈𝑉

∑

𝑎𝑖∈𝐴𝑔
�̃�𝑔
𝑖ℎ. (10)

he total static energy consumption is

̄ =
∑

𝑣ℎ∈𝑉

(

𝐶𝑚𝑎𝑥 −
∑

𝐺𝑔∈𝐺

∑

𝑎𝑖∈𝐴𝑔
𝐸𝑇 𝑔

𝑖ℎ × 𝜂ℎ
)

× �̄�(𝑣𝑃ℎ ). (11)

he communication energy consumption between task 𝑎𝑔𝑖 and 𝑎𝑔𝑗 is

⃗𝑔,𝑘ℎ
𝑖𝑗 =

{

𝐶𝑇 𝑔,𝑘ℎ
𝑖𝑗 × �⃗�, 𝜂𝑘 + 𝜂ℎ ≥ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

he total communication energy consumption is
⃗ =

∑

𝐺𝑔∈𝐺

∑

𝑣𝑘∈𝑉

∑

𝑣ℎ∈𝑉

∑

𝑒𝑖𝑗∈𝐸𝑔
�⃗�𝑔,𝑘ℎ
𝑖𝑗 . (12)

The total energy consumption is

= Ẽ + Ē + E⃗. (13)

.3.3. Total monetary cost
The total monetary cost includes the cost of leasing VMs in public

loud and the communication cost when outgoing from public cloud.
et 𝑆𝑇 ℎℏ and 𝐹𝑇 ℎℏ be the ℏ-th start and end time of the rented VM 𝑣ℎ

in running state, ℏ ≥ 1. Let 𝑆𝑇
𝐻
ℎℏ′ and 𝐹𝑇

𝐻
ℎℏ′ be the ℏ′-th start and end

time of the rented VM 𝑣ℎ in hibernate state, ℏ′ ≥ 0. The total rental
cost of VMs is

M̃ =
∑

𝑣ℎ∈𝑉 , 𝜂ℎ=0

(

𝑀(𝑣𝑃ℎ ) ×
∑

ℏ
(𝐹𝑇 ℎℏ − 𝑆𝑇 ℎℏ)+

𝑀𝐻 ×
∑

ℏ′
(𝐹𝑇

𝐻
ℎℏ′ − 𝑆𝑇

𝐻
ℎℏ′ )

)

.
(14)

The communication cost between task 𝑎𝑔𝑖 and 𝑎𝑔𝑗 is

M⃗𝑔,𝑘ℎ
𝑖𝑗 =

{

𝑑𝑔𝑖𝑗 × �⃗� × 𝜁𝑔𝑖𝑘 × 𝜁𝑔𝑗ℎ, 𝜂𝑘 = 0 & 𝜂ℎ = 1,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The total communication cost is

M⃗ =
∑

𝐺𝑔∈𝐺

∑

𝑣𝑘∈𝑉

∑

𝑣ℎ∈𝑉

∑

𝑒𝑖𝑗∈𝐸𝑔
�⃗�𝑔,𝑘ℎ

𝑖𝑗 . (15)

The total monetary cost is
̃ ⃗
M = M +M. (16)
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3.3.4. Scheduling model
The objectives of the studied problem is to minimize the total

tardiness, total energy consumption and total monetary cost of privacy-
aware multi-workflow scheduling. Based on the above discussions, the
constrained optimization problem can be formulated as follows:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 T, E, M (17a)

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨∶ Eq. (3), ∀𝑎𝑔𝑖 ∈ 𝐴𝑔 , ∀𝐺𝑔 ∈ 𝐺, (17b)

Eq. (4), ∀𝑣ℎ ∈ 𝑉 , ∀𝑎𝑔𝑖 ∈ 𝐴𝑔 , ∀𝐺𝑔 ∈ 𝐺, (17c)

Eq. (5), ∀𝑣𝑘, 𝑣ℎ ∈ 𝑉 , ∀𝑒𝑔𝑖𝑗 ∈ 𝐸𝑔 , ∀𝐺𝑔 ∈ 𝐺, (17d)

Eqs. (6), (7), (8), ∀𝐺𝑔 ∈ 𝐺, (17e)

𝜂ℎ ∈ {0,1} , ∀𝑣ℎ ∈ 𝑉 , (17f)

𝜁𝑔𝑖ℎ ∈ {0,1} , ∀𝑣ℎ ∈ 𝑉 , ∀𝑎𝑔𝑖 ∈ 𝐴𝑔 , ∀𝐺𝑔 ∈ 𝐺, (17g)

where the decision variables are 𝜁𝑔𝑖ℎ, 𝜂ℎ and 𝑆𝑇 𝑔
𝑖 (∀𝑣ℎ ∈ 𝑉 , ∀𝑎𝑔𝑖 ∈

𝐴𝑔 , ∀𝐺𝑔 ∈ 𝐺).

3.4. Basic concepts of MOP

MOP concerns more than one objective simultaneously to explore a
trade-off between the conflicting objectives (Wu & Wang, 2018). it is
usually formulated as follows:
{

minimize 𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑧(𝑥),
subject to: 𝑥 ∈ 𝑋,

where 𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑧(𝑥) are objectives to be minimized, and 𝑥 is a
vector of decision variables, and 𝑋 is the set of feasible solution. In
most cases, there may not be a solution that minimizes all objectives.
Therefore, the Pareto optimal solutions are adopted as the results of
MOP.

Definition 1 (Pareto Dominance). A solution 𝑥1 is considered to
(Pareto) dominate solution 𝑥2 (denoted as 𝑥1 ≻ 𝑥2) if and only if (a)
∀𝑖 ∈ {1,2,… , 𝑧}: 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2), and (b) ∃𝑖 ∈ {1,2,… , 𝑧}: 𝑓𝑖(𝑥1) <
𝑓𝑖(𝑥2).

Definition 2 (Pareto Front). A solution 𝑥 is called a non-dominated
solution or Pareto solution if it is not dominated by any other solution.
The solution set containing all Pareto solutions is defined as the Pareto
Front/Pareto set.

The multi-objective optimization algorithms are required to find a
non-dominated solution set/archive set (𝙰𝚂). There are two main
metrics to evaluate the obtained 𝙰𝚂: (1) HyperVolume reflecting the
diversity and convergence of 𝙰𝚂. (2) Coverage Rate reflecting the
dominance relationship between two archive sets.

4. The proposed multi-workflow scheduling algorithm (MSIA)

Fig. 2 shows the flow chart of our proposed algorithm. At first,
the population is initialized with HSA9Fs and random method, and
the archive set is initialized. Then, MSSA is used to update the pop-
ulation, and IGA is used to further optimize individuals. The relevant
implementation details are introduced in the following sections. Table 3
summarizes the symbols used in this section.

4.1. Preprocessing operator

We present the preprocessing operators involved in the proposed
algorithm for preprocessing multi-workflow structures and data.
6

Fig. 2. Flow chart of the proposed MSIA.

Fig. 3. An example of sequence tasks merging into one task block.

4.1.1. Merging
There are some sequential tasks with single-output and single-input

structure in DAG, which satisfy Eq. (18). As in Sahni and Vidyarthi
(2018) and Sun et al. (2022), we merge them into a task block to sim-
plify DAG. The task block’s execution time is the sum of the execution
times of all of its internal tasks, and there is no data communication
within the structure. Fig. 3 shows three sequence tasks merging into
one task block.
|

|

|

𝑆𝑢𝑐(𝑎𝑔𝑖 )
|

|

|

=
∑

𝑎𝑔𝑗∈𝑆𝑢𝑐(𝑎
𝑔
𝑖 )

|

|

|

𝑃𝑟𝑒(𝑎𝑔𝑗 )
|

|

|

= 1, 𝜙𝑔
𝑖 = 𝜙𝑔

𝑗 , (18)

where 𝜙𝑔
𝑖 = 𝜙𝑔

𝑗 denotes that the corresponding tasks have the same
privacy tag.

4.1.2. Task topological level
As in Hu et al. (2020) and Sun et al. (2022), task 𝑎𝑔𝑖 ’s topological

level 𝐿𝑔
𝑖 in workflow 𝐺𝑔 is

𝐿𝑔
𝑖 =

⎧

⎪

⎨

⎪

⎩

1, 𝑖𝑓 𝑃 𝑟𝑒(𝑎𝑔𝑖 ) = ∅,

max
𝑎𝑔𝑗∈𝑃𝑟𝑒(𝑎

𝑔
𝑖 )

{

𝐿𝑔
𝑗

}

+ 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (19)

Thus, the set �̄�𝑔𝑙𝑖 ∈ �̄�𝑔 of tasks at each level can be represented as

�̄�𝑔 =
{

𝑎𝑔||𝑙 = 𝐿𝑔 , 𝑎𝑔 ∈ 𝐴𝑔
}

, (20)
𝑙 𝑖
|

𝑖 𝑖
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Table 3
Symbols and meanings in Section 4.

Symbol Definition

𝐿𝑔
𝑖 Task 𝑎𝑔𝑖 ’s topological level.

�̄�𝑔𝑙𝑖 The 𝑖th task of the 𝑙th level of workflow 𝐺𝑔 , �̄�𝑔𝑙𝑖 ∈ �̄�𝑔 ; ||
|

�̄�𝑔𝑙
|

|

|

is the
number of tasks at 𝑙th level.

𝑆𝑢𝑏𝐷𝑔
𝑖 The sub-deadline of task 𝑎𝑔𝑖 .

𝑡𝑔 The maximum completion time of the scheduled tasks of workflow 𝐺𝑔 .

𝑡 The maximum completion time of all scheduled tasks.

𝜂𝑔 The scheduled topology level of workflow 𝐺𝑔 .

𝜌𝑔𝑐 The pseudo-critical path length of workflow 𝐺𝑔 .

𝜇𝑔
𝑐 The urgency of workflow 𝐺𝑔 .

�̄� The workflow 𝐺�̄� to be scheduled.

𝛼 The task to be scheduled, assuming it is the 𝑖th task of workflow 𝐺�̄� ,
that is 𝛼 = 𝑎�̄�𝑖 .

𝑡𝐸𝛼ℎ The Earliest Available Time.

𝑡𝐴𝛼ℎ The Actual Available Time.

𝜏𝑖 The idle interval, 𝜏𝑖 =
[

𝜏𝑖0 , 𝜏𝑖1
]

.

𝑉 The available VM set.

𝑉 The intersection of the VM set with running tasks at the adjacent three
levels (𝜂�̄� , 𝜂�̄� − 1 and 𝜂�̄� − 2) and the available VM set 𝑉 .

ℎ̄ The instance selected to execute the task 𝛼.

𝜋 The solution, 𝜋 = [𝜋𝐿 , 𝜋𝐴].

𝜋𝐿 Encoding based on workflow topological levels in Stage 1.

𝜋𝐴 Encoding in Stage 2; 𝜋𝐴 is the vector description of �̄�𝑔 .

𝜋𝐴
𝑔𝑙𝑖 The 𝑖th task at the 𝑙th level of workflow 𝐺𝑔 , 𝜋𝐴

𝑔𝑙𝑖 ∈ 𝜋𝐴.

𝜋𝐶 The continuous vector of 𝜋𝐿.

where �̄�𝑔𝑙𝑖 denotes the 𝑖th task at the 𝑙th level, 𝑙 = 1,2,… ,max {𝐿𝑔},
𝑖 = 1,2,… , ||

|

�̄�𝑔𝑙
|

|

|

, and |

|

|

�̄�𝑔𝑙
|

|

|

is the number of tasks at 𝑙th level. Especially,
tasks at a lower topological level have higher priorities than tasks at a
higher level (Wu et al., 2016).

4.1.3. Division sub-deadline
A task’s latest finish (start) time is the latest time at which it can be

finished (started) so that all tasks can be completed before deadline. In
this paper, we set a sub-deadline for each task based on Latest Finish
Time. We use the maximum execution time 𝐸𝑇 𝑔

𝑖 =
𝑤𝑔
𝑖

min𝑝𝑘∈𝑃 {𝑈 (𝑝𝑘)}
and

he maximum transmission time 𝐶𝑇 𝑔
𝑖𝑗 =

𝑑𝑔𝑖𝑗
min𝑝𝑘∈𝑃 {𝑏𝑘}

to calculate latest
start time and finish time:

𝐹𝑇 𝑔
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐷𝐿𝑔 , 𝑖𝑓 𝑆𝑢𝑐(𝑎𝑔𝑖 ) = ∅,

max
𝑎𝑗∈𝑆𝑢𝑐(𝑎

𝑔
𝑖 )

{

𝑆𝑇 𝑔
𝑗 − 𝐶𝑇 𝑔

𝑗𝑖

}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝑆𝑇 𝑔
𝑗 = 𝐹𝑇 𝑔

𝑗 − 𝐸𝑇 𝑔
𝑗 .

The sub-deadline 𝑆𝑢𝑏𝐷𝑔
𝑖 of task 𝑎𝑔𝑖 is given in Eq. (21).

𝑆𝑢𝑏𝐷𝑔
𝑖 =

{

𝐹𝑇 𝑔
𝑖 , 𝑖𝑓 𝑆𝑢𝑐(𝑎𝑔𝑖 ) = ∅,

𝜀𝑔 × 𝐹𝑇 𝑔
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(21)

where 𝜀𝑔 is a random factor of the workflow 𝐺𝑔 within the range
0.95,1]. The smaller the 𝜀𝑔 , the more urgent the tasks in the workflow
nd the smaller the sub-deadline.

.2. Heuristic scheduling algorithm based on 9 factors (HSA9Fs)

Heuristic scheduling algorithm is to dynamically determine the
cheduling order of workflow topology level through the established
ules. Each workflow is scheduled at the order of topology level. All
asks at the same level are independent of each other, without data
ransmission. They are scheduled according to the descending order of
ask weight. Algorithm 1 presents the procedure of HSA9Fs.
7
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Algorithm 1: HSA9Fs
Input: Resource 𝑃 , multi-workflow 𝐺
Output: Heuristic scheduling result

1 Set 𝑡𝑔 , 𝑡 and 𝜂𝑔 to 0, where 𝐺𝑔 ∈ 𝐺;
2 Set 𝑉 ← 𝑃 ;
3 for 𝑖 ← 1 to ∑

𝐺𝑔∈𝐺 |𝐴𝑔
| do

4 Compute 𝜌𝑔𝑐 by Eq. (22), 𝑔 ∈ 𝐺, 𝑐 ∈ {0,1};
5 Compute 𝜇𝑔

𝑐 by Eq. (23), 𝑔∈𝐺, 𝑐 ∈{0,1};
6 Get �̄� through Eq. (24);
7 𝑙�̄� ← 𝑙�̄� + 1;
8 Sort the tasks in �̄��̄�

𝑙�̄�
in descending order of weight;

9 foreach 𝛼 ∈ �̄��̄�
𝑙�̄�
do

10 call 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛; // Algorithm 2

11 call 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛; // Algorithm 3

4.2.1. Get the workflow to be scheduled
Multi-workflow scheduling first needs to select a workflow to sched-

ule, which is determined by the pseudo-critical path and urgency of the
workflow. They (pseudo-critical path and urgency) comprehensively
consider factors such as unscheduled levels, current completion time
and deadline of workflow.

Let 𝑡𝑔 denote the maximum completion time of the scheduled tasks
f workflow 𝐺𝑔 , 𝑡 = max

{

𝑡𝑔||
|

𝐺𝑔 ∈ 𝐺
}

denote the maximum completion
time of all scheduled tasks, and 𝑙𝑔 denote the scheduled topology level
of workflow 𝐺𝑔 .

The pseudo-critical path2 is defined as the sum of the minimum
execution time of tasks at each unscheduled level (that is, assume
that tasks are executed on the instance with the highest processing
capacity). In different cloud environments, the pseudo-critical path
length are different. Let 𝜌𝑔𝑐 denote the pseudo-critical path length of
workflow 𝐺𝑔 , 𝑔 ∈ 𝐺, 𝑐 ∈ {0,1} (line 4 in Algorithm 1). If 𝑐 = 0, it is in
public cloud; otherwise, it is in private cloud.

𝜌𝑔𝑐 =

⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝑙𝑔 = max {𝐿𝑔} ,
max{𝐿𝑔}
∑

𝑙=𝑙𝑔+1

max𝑎𝑔𝑖 ∈�̄�
𝑔
𝑙

{

𝑤𝑔
𝑖
}

max𝑝𝑘∈𝑃 𝑐
{

𝑈 (𝑝𝑘)
} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(22)

The urgency of a workflow is the ratio of the pseudo-partial critical
path to the remaining time (the difference between the deadline of the
workflow and its current maximum completion time). Let 𝜇𝑔

𝑐 denote
the urgency of workflow 𝐺𝑔 (line 5 in Algorithm 1). The urgency of a
scheduled workflow is negative infinity (−∞) by default.

𝜇𝑔
𝑐 =

⎧

⎪

⎨

⎪

⎩

−∞, 𝑖𝑓 𝑙𝑔 = max {𝐿𝑔} ,
𝜌𝑔𝑐

𝐷𝐿𝑔 − 𝑡𝑔
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(23)

hen 𝜇𝑔
𝑐 , 𝑐 = 0 or 1 is in the range of (0,1), it means that the deadline

an be met in the configuration with the highest instance execution
bility; Otherwise, it will miss the deadline even in that configuration.

PMWS-HC should make the best use of private resources, so the
orkflow with the highest urgency based on private cloud (𝑐 = 1) will
e the workflow to be scheduled, and the topology level of scheduling is
he scheduled level plus 1, that is, 𝑙�̄� = 𝑙�̄� +1. �̄� (or 𝐺�̄�) is the workflow
o be scheduled (lines 6–7 in Algorithm 1).

�̄� = arg max
𝐺𝑔∈𝐺

𝜇𝑔
1. (24)

2 Since this critical path is based on the topology level, the tasks in the
ath are not necessarily on one path in the DAG, so it is called pseudo-critical
ath.
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Fig. 4. Get the Earliest Available Time diagram.

4.2.2. Task scheduling and VM selection
After determining the workflow (or workflow topology level) to be

scheduled, the tasks to be scheduled will be determined. In HSA9Fs,
tasks are scheduled in descending order based on task weights at
the same level (lines 8–10 in Algorithm 1). When selecting VM, we
comprehensively consider the existing scheduling results, urgency, sub-
deadline and other factors, as shown in Algorithm 2. Before resource
selection, we first judge the privacy tag of the task to be scheduled.
We only select resources from the private cloud if it is a sensitive task
(lines 1–4 of Algorithm 2).

Let 𝛼 be the task to be scheduled, assuming it is the 𝑖th task of
workflow 𝐺�̄� , that is 𝛼 = 𝑎�̄�𝑖 . The Earliest Available Time is the
maximum value of the sum of the actual finish time of its predecessor
task and transmission time. The Earliest Available Time 𝑡𝐸𝛼ℎ of task 𝛼 on
VM 𝑣ℎ is (line 5 in Algorithm 2)

𝑡𝐸𝛼ℎ =

⎧

⎪

⎨

⎪

⎩

𝐷𝑢𝑟𝐶 , 𝑖𝑓 𝑃 𝑟𝑒(𝛼) = ∅,

max
𝑎�̄�𝑗∈𝑃𝑟𝑒(𝛼)

{

𝐹𝑇 �̄�
𝑗 + 𝐶𝑇 �̄�,𝑘ℎ

𝑗𝛼

}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (25)

where task 𝑎�̄�𝑗 is executed on VM 𝑣𝑘, 𝐷𝑢𝑟𝐶 is the duration of cold
startup. The Earliest Available Time ignores the scheduled tasks on the
VM and is used to calculate the Actual Available Time.

For Actual Available Time, we design a calculation method suitable
for multi-workflow scheduling. According to the current scheduling
result, we can get the idle interval 𝜏𝑖 =

[

𝜏𝑖0, 𝜏𝑖1
]

on one VM, where
𝜏𝑖 ∈ 𝜏 =

{

𝜏𝑖
|

|

|

𝑖 = 1,2,… , |𝜏|
}

. 𝜏𝑖0 and 𝜏𝑖1 denote the start time and end
time of the 𝑖th interval 𝜏𝑖, respectively. When constraint Eq. (26) is met,
task 𝛼 can be executed in the idle interval 𝜏𝑖. The Actual Available Time
𝑡𝐴𝛼ℎ depends on the idle interval that satisfies this constraint first (line
6 in Algorithm 2), as shown in Eq. (27).

max
{

𝑡𝐸𝛼ℎ, 𝜏𝑖0
}

+
𝑤�̄�

𝑖

𝑈 (𝑣𝑃ℎ )
≤ 𝜏𝑖1, (26)

𝑡𝐴𝛼ℎ = min
{

max
{

𝑡𝐸𝛼ℎ, 𝜏𝑖0
}

|𝜏𝑖 satisfies Eq. (26), 𝜏𝑖 ∈ 𝜏
}

. (27)

For example, 𝛼 is the task to be scheduled, and Fig. 4 is a Gantt chart
of a VM 𝑣𝑘. On this VM, the Earliest Available Time of task 𝛼 is 𝑡2, that
is, it can be executed at any time after 𝑡2 without affecting other tasks.
The idle intervals after (including) 𝑡2 are [𝑡1, 𝑡3], [𝑡4, 𝑡6] and [𝑡7,+∞],
while the intervals [𝑡4, 𝑡6] and [𝑡7,+∞] can satisfy the execution time
constraint Eq. (26). To execute task 𝛼 as early as possible, we take 𝑡4
as its Actual Available Time on this VM.

When the Actual Available Time plus the task’s execution time does
not exceed the sub-deadline of the task, the VM is deemed to meet the
sub-deadline, and all such VMs constitute an available VM set 𝑉 . We
select the VM to execute the task through the following three-layers
specific rules:

• Lines 8-9 in Algorithm 2. In the hybrid cloud, when the urgency 𝜇�̄�

is not within (0,1), or when the available VM set 𝑉 is empty, the
VM is selected according to the earliest completion time, as shown
in Eq. (28).

ℎ̄ = arg min
{

𝑡𝐴𝛼ℎ +
𝑤�̄�

𝑖
𝑃

}

. (28)
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ℎ∈𝑉 𝑈 (𝑣ℎ )
Algorithm 2: ResourceSelection

Input: Workflow �̄� (𝐺�̄�), task 𝛼 (or 𝑎�̄�𝑖 ), VMs set 𝑉
Output: Scheduling result of the task

1 if 𝜙�̄�
𝑖 == 1 then // Sensitivity judgment

2 𝑉 ′ ← the VMs of the private cloud in 𝑉 ;
3 else
4 𝑉 ′ ← 𝑉 ;
5 Compute Earliest Available Time 𝑡𝐸𝛼ℎ by Eq. (25), ℎ ∈ 𝑉 ′;
6 Compute Actual Available Time 𝑡𝐴𝛼ℎ by Eqs. (26) and (27),

ℎ ∈ 𝑉 ′;
7 Get VM set 𝑉 that meets sub-deadline through 𝑡𝐴𝛼ℎ;
8 if 𝜇�̄� ∉ (0,1) or 𝑉 == ∅ then
9 Get ℎ̄ by Eq. (28), ℎ̄ ∈ 𝑉 ′;
10 else
11 Get the intersection 𝑉 of VM set with running tasks at the

adjacent three levels (𝑙�̄� , 𝑙�̄� −1 and 𝑙�̄� −2) and the VM set 𝑉 ;
12 if 𝑉 ≠ ∅ then
13 Get ℎ̄ by Eq. (29a), ℎ̄ ∈ 𝑉 ′;
14 if ℎ̄ is not satisfied with Eq. (29b) then
15 Get ℎ̄ by Eq. (30), ℎ̄ ∈ 𝑉 ′;

16 𝜁 �̄�
𝑖ℎ̄

← 1, 𝑆𝑇 �̄�
𝑖 ← 𝑡𝐴

𝛼ℎ̄
, 𝐹𝑇 �̄�

𝑖 ← 𝑆𝑇 �̄�
𝑖 +

𝑤�̄�
𝑖

𝑈 (𝑣𝑃
ℎ̄
)
;

17 𝑡�̄� ← max
{

𝑡�̄� , 𝐹𝑇 �̄�
𝑖

}

, 𝑡 ← max
{

𝑡, 𝑡�̄�
}

;

18 if only task 𝛼 is running on VM ℎ̄ then 𝑉 ←𝑉 ∪
[

𝑣𝑃
ℎ̄

]

;

• Lines 11-13 in Algorithm 2. For compact scheduling, the VM is
selected from the following set: the intersection 𝑉 of the VM set with
running tasks at the adjacent three topological levels (𝑙�̄� , 𝑙�̄� − 1 and
𝑙�̄� − 2) and the available VM set 𝑉 . In this intersection 𝑉 , in order
to preferentially select one VM in the private cloud, we select the
corresponding VM using the minimum correction parameter (Actual
Available Time multiplied by (1 − 0.9𝜂ℎ)), as shown in Eq. (29a).
When the finish time of task 𝛼 on this VM does not exceed the sub-
deadline 𝑆𝑢𝑏𝐷�̄�

𝑖 or the current maximum completion time 𝑡 (as shown
in Eq. (29b)), the VM is used to execute this task.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ̄ = arg min
ℎ∈𝑉

{

𝑡𝐴𝛼ℎ × (1 − 0.9𝜂ℎ)
}

, (a)

𝑡𝐴
𝛼ℎ̄

+
𝑤�̄�

𝑖

𝑈 (𝑣𝑃
ℎ̄
)
≤ min

{

𝑆𝑢𝑏𝐷�̄�
𝑖 , 𝑡

}

. (b)
(29)

• Lines 14-15 in Algorithm 2. In the VM set 𝑉 , the corresponding VM
is selected according to the another correction parameter, as shown
in Eq. (30).

ℎ̄ = arg min
ℎ∈𝑉

{

(

𝐷𝐿�̄� − 𝑡𝐴𝛼ℎ −
𝑤�̄�

𝑖

𝑈 (𝑣𝑃ℎ )

)

×
𝑤�̄�

𝑖

𝑈 (𝑣𝑃ℎ )
×

1 + 𝜂ℎ
1 + 𝑡𝐷𝛼ℎ

}

, (30)

where
(

𝐷𝐿�̄� − 𝑡𝐴𝛼ℎ −
𝑤�̄�
𝑖

𝑈 (𝑣𝑃ℎ )

)

is the remaining available time before

the deadline and 𝑤�̄�
𝑖

𝑈 (𝑣𝑃ℎ )
is the execution time of the current task.

The product of these two parameters is to select a VM whose Actual
Available Time is not too early or too late, which makes the algorithm
non-greedy. 1 + 𝜂ℎ is the preferred private cloud. 𝑡𝐷𝛼ℎ = 𝑡𝐴𝛼ℎ − 𝑡𝐸𝛼ℎ is
the difference between the Actual Available Time and the Earliest
Available Time, plus 1 to avoid the denominator being 0.

When the VM ℎ̄ that executes the task 𝛼 is obtained, the actual start
time of this task is also determined, e.g. 𝑆𝑇 �̄�

𝑖 = 𝑡𝐴
𝛼ℎ̄

. Meanwhile, its
actual finish time can also be obtained (line 16 in Algorithm 2). If only
task 𝛼 is executed on VM ℎ̄, the VM ℎ̄ will be added to the used VM
instance set 𝑉 (line 18 in Algorithm 2). Particularly, when the number
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of this type of VM has reached the limit of private cloud resources, it
will not be added.

4.2.3. Adaptive calibration task actual start time
While designing scheduling algorithm, there is an universal com-

monality: tasks are executed as early as possible. There will be some
idle time caused if subsequent tasks cannot instantly start to be exe-
cuted in time owing to dependency constraints. However, some idle
time can be avoided by delaying the start execution time of some tasks.

Definition 3 (Block Structure Sun et al., 2022). It consists of tasks
hat are continuously executed without idle intervals on the same VM.
articularly, when there is only one task, it can also be called a block
tructure.

heorem 1 (Block Structure Property Sun et al., 2022). In a given
cheduling solution, first block structure on VM 𝑣ℎ is 𝑋 = [1,2,… , |𝑋|].
hen ∀𝑥 ∈ 𝑋, 𝑡𝐹𝑥 − 𝑡𝐹𝑥 > 0, the block structure can be moved backward
y 𝛥𝑡 without affecting the execution of other tasks to reduce idle time and
ost.

̂𝐹𝑥 =

{

min
{

𝑆𝑇𝑦 − 𝐶𝑇 𝑣ℎ ,𝑣𝑘
𝑥,𝑦

}

, 𝑦 ∈
(

𝑆𝑢𝑐(𝑥) − 𝑆𝑢𝑐(𝑥) ∩𝑋
)

,
𝐹𝑇𝑥, 𝑖𝑓 𝑆𝑢𝑐(𝑥) = ∅,

(31)

𝑡 = min
{

𝑆𝑇
|𝑋|+1 − 𝐹𝑇

|𝑋|

,min
{

𝑡𝐹𝑥 − 𝐹𝑇𝑥|𝑥 ∈ 𝑋
}}

, (32)

here 𝑡𝐹𝑥 , 𝑆𝑇𝑥 and 𝐹𝑇𝑥 denote the estimated latest finish time, actual start
ime and actual finish time of task 𝑥 in the current solution.

Algorithm 3: Adaptive adjustment solution
Input: The mapping between tasks and resources 𝜁 , the actual

start of tasks 𝑆𝑇 , and the actual finish time of tasks 𝐹𝑇 .
Output: 𝑓 = (T, E, M)
/* Calibrate task Actual Start Time */

1 Procedure CalibrateTime(𝑋)
2 Compute 𝑡𝐹𝑥 using Eq. (31), ∀𝑥 ∈ 𝑋;
3 if ∀𝑥 ∈ 𝑋, 𝑡𝐹𝑥 > 𝐹𝑇𝑥 then
4 Compute 𝛥𝑡 using Eq. (32);
5 foreach 𝑥 ∈ 𝑋 do
6 𝑆𝑇𝑥 ← 𝑆𝑇𝑥 + 𝛥𝑡;
7 𝐹𝑇𝑥 ← 𝐹𝑇𝑥 + 𝛥𝑡;

8 repeat
9 foreach ℎ ∈ 𝑉 do
10 Find 𝑋 as first block structure in instance 𝑣ℎ;
11 CalibrateTime(𝑋);
12 Find another 𝑋 that ends with the penultimate task in

instance 𝑣ℎ;
13 CalibrateTime(𝑋);

14 until no block is found;
/* Setting VM hibernation */

15 foreach ℎ ∈ 𝑉 do
16 Record tasks 𝑆ℎ𝑗 on instance 𝑣ℎ;
17 𝑣𝑎𝑟 ← 0, ℏ ← 1, ℏ′ ← 0;
18 𝑆𝑇 ℎℏ ← 𝑆𝑇𝑆ℎ1 −𝐷𝑢𝑟𝐶 ;
19 for 𝑘 ← 1 to |

|

𝑆ℎ
|

|

− 1 do
20 𝑝 ← 𝑆ℎ𝑘, 𝑠 ← 𝑆ℎ(𝑘+1);
21 if 𝑆𝑇𝑠 − 𝐹𝑇𝑝 > 𝐷𝑢𝑟𝐻& 𝐹𝑇𝑝 − 𝑣𝑎𝑟 > 𝐺𝑎𝑝𝐻 then
22 ℏ′ ← ℏ′ + 1, 𝑣𝑎𝑟 ← 𝑆𝑇𝑠;
23 𝑆𝑇

𝐻
ℎℏ′ ← 𝐹𝑇𝑝, 𝐹𝑇

𝐻
ℎℏ′ ← 𝑆𝑇𝑠 −𝐷𝑢𝑟𝑊 ;

24 𝐹𝑇 ℎℏ ← 𝐹𝑇𝑝, ℏ ← ℏ + 1, 𝑆𝑇 ℎℏ ← 𝑆𝑇𝑠;

25 𝐹𝑇 ℎℏ ← 𝐹𝑇𝑆ℎ|𝑆ℎ|
;

26 Compute 𝑓 = (T, E, M).
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Table 4
Solution representation in Stage 1.

Workflow 𝐺𝑔 1 2 3
max(𝐿𝑔 ) 2 3 4

Dimension 𝑙 1 2 3 4 5 6 7 8 9
𝜋𝐶
𝑙 2.25 1.69 4.35 1.57 0.64 4.83 3.56 2.68 0.93

𝑦𝑙 5 4 8 3 1 9 7 6 2
𝜋𝐿
𝑙 2 2 3 2 1 3 3 3 1

Delaying task execution to save cost reflects the advantages of
the cloud’s pay-as-you-go. Consequently, the scheduling solution is
adjusted utilizing Theorem 1: Traverse two block structures on each
VM until there is no block structure that satisfies the constraint of
Theorem 1 (lines 8–14 in Algorithm 3). If the block structure satisfies
Theorem 1’s constraint, the actual start and finish time of correspond-
ing tasks will be updated. Delaying the operation will not lead to the
increase of the maximum completion time of the workflow, because it
limits the estimated latest completion time of tasks without successors
to the actual completion time. Therefore, the deadline will not be
missed.

4.2.4. Adaptive setting VM hibernation
Since certain instances support the hibernation function, if one

instance has been idle for an extended period of time, it is prudent to
hibernate the instance to save cost. However, excessive hibernation can
cause system failure or software function errors. As a result, a heuristic
strategy for scheduling when to hibernate an instance is proposed:
Traverse each idle interval between in instances, and set the idle
interval to hibernate state when the hibernation criteria is reached. The
hibernation criteria may be the shortest duration of hibernation and
the minimum gap between two adjacent hibernation in one instance.
According to the scheduled results, the tasks executed on each instance
and their start and finish time are known. Let 𝑆ℎ𝑗 be the 𝑗th task
executed on instance 𝑣ℎ. See lines 15–25 Algorithm 3 for details.

4.3. Meta-heuristic algorithm

4.3.1. Encoding and population initialization
Encoding. The encoding of algorithm is to determine the scheduling

rder of workflows and their tasks. Because of the continuous nature
f MSSA, it cannot be directly applied to multi-workflow scheduling.
herefore, it is crucial to develop an appropriate mapping scheme to
ransform individuals (salps, continuous vectors) and task sequences
discrete vector). In this paper, we schedule each DAG in the order
f topological level, and present the following two-stage encoding
ethod.

• Stage 1. Encoding based on workflow topological levels, the encoding
length is the sum of the number of topological levels of all workflows.
The workflow index and its times are used to indicate the tasks of
the workflow topological level that will be scheduled, e.g. 𝜋𝐿 =
[

𝜋𝐿
1 , 𝜋

𝐿
2 ,… , 𝜋𝐿

9

]

=
[

2,2,3,2,1,3,3,3,1
]

, where 𝜋𝐿
4 = 2 denotes the

tasks at 3-rd level of workflow 𝐺2; 𝜋𝐿
6 = 3 denotes the tasks at 2-nd

level of workflow 𝐺3.
• Stage 2. Tasks within the topological level corresponding to Stage 1,

which are independent of each other and have no data transfer. Let
𝜋𝐴
𝑔𝑙𝑖 be the 𝑖th task in the 𝑙th level of workflow 𝐺𝑔 (𝜋𝐴 is the vector

representation of �̄�𝑔 in Section 4.1.2).

Therefore, the whole solution is expressed as 𝜋 = [𝜋𝐿, 𝜋𝐴].
Smallest-order-value (SOV) rule (Qian et al., 2011; Sun et al., 2018)

are applied to conversions between continuous and discrete individ-
uals,3 i.e. 𝜋𝐶 ⇔ 𝜋𝐿. In the SOV rule, continuous vectors 𝜋𝐶 =

3 Note: MSSA acts on Stage 1; IGA acts on both Stage 1 and Stage 2.
Therefore, there is continuous coding in Stage 1 only.
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[

𝜋𝐶
1 , 𝜋

𝐶
2 ,… , 𝜋𝐶

|𝐿|

]

are ranked in ascending order to get an sequence
𝑦 =

[

𝑦1, 𝑦2,… , 𝑦
|𝐿|

]

, where 𝑦𝑖 denotes the index of original 𝜋𝐶
𝑖 in

the sorted 𝜋𝐶 , |𝐿| =
∑

𝑔∈𝐺 max(𝐿𝑔) is the encoding length. Then fill
𝜋𝐿 with max(𝐿𝑔) times 𝑔 in the order of 𝑦 values in turn. To better
understand the SOV rule, an example is provided in Table 4. In the
example, |𝐺| = 3, |𝐿| = ∑

𝑔∈𝐺 max(𝐿𝑔) = 2+ 3+ 4 = 9. In the ascending
order of 𝜋𝐶 ,

• when 𝜋𝐶
5 is the 1-st, then 𝑦5 = 1 and 𝜋𝐿

5 = 1;
• when 𝜋𝐶

9 is the 2-nd, then 𝑦9 = 2 and 𝜋𝐿
9 = 1;

• when 𝜋𝐶
4 is the 3-rd, then 𝑦4 = 3 and 𝜋𝐿

4 = 2;
• when 𝜋𝐶

2 is the 4-th, then 𝑦2 = 4 and 𝜋𝐿
2 = 2, and so on.

Population Initialization. An initial solution is obtained by HSA9Fs
(Section 4.2). Others are randomly generated: In Stage 1, continuous
vectors are randomly generated, and then discrete vectors are gener-
ated by SOV rule; Stage 2 is the random permutation of tasks at the
same topological level; Then the Algorithm 2 in Section 4.2.2 is utilized
to decode.

4.3.2. Update mechanism of MSSA
Multi-objective Salp Swarm Algorithm (MSSA) is proposed by Mir-

jalili et al. (2017) for optimization problems on continuous domains.
By mimicking the swarming behavior of salps, MSSA models the salp
chains as two groups: leader and followers. The leader is the salp at
the front of the chain, while followers are the rest of the salps. The
salp leader guides the swarm, as the name implies, while the followers
follow one by one.

Let 𝑥𝑖𝑗 be the position of 𝑖th salp in the 𝑗th dimension, where 𝑖 =
1,2,… , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒; 𝑗 = 1,2,… , |𝐿|. Each salp can be updated by Eq. (33)
or Eq. (34).

𝑥𝑖𝑗 =

{

𝐹𝑗 + 𝑐1 ×
(

(𝑢𝑏𝑗 − 𝑙𝑏𝑗 ) × 𝑐2 + 𝑙𝑏𝑗
)

, 𝑖𝑓 𝑐3 ≤ 0.5,
𝐹𝑗 − 𝑐1 ×

(

(𝑢𝑏𝑗 − 𝑙𝑏𝑗 ) × 𝑐2 + 𝑙𝑏𝑗
)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(33)

𝑥𝑖𝑗 =
1
2 (𝑥

𝑖
𝑗 + 𝑥𝑖−1

𝑗 ), (34)

where 𝐹𝑗 is the position of source food in 𝑗th dimension, 𝑢𝑏𝑗 and 𝑙𝑏𝑗
denote the limits of search domain at dimension 𝑗, 𝑐1, 𝑐2 and 𝑐3 are
random values follow the uniform distribution 𝑈 [0,1). Since Eq. (33)
only updates its position in relation to 𝐹𝑗 , to balances exploration and
exploitation, 𝑐1 is redefined as 𝑐1 = 2 exp

(

−( 4𝐼𝑅
|𝐼𝑅| )

2), where 𝐼𝑅 and |𝐼𝑅|
denote the current iteration and the total number of iterations.

Source food 𝐹 is the current optimal individual or a individual in
the archive set 𝙰𝚂. This 𝙰𝚂 retains the best non-dominated solutions
discovered thus far during iteration and has a maximum size |𝐴𝑆| to
store a limited number of non-dominated solutions. During iteration,
each salp is compared with all solutions in 𝙰𝚂 by using the Pareto
domination definition. If it can dominate a solution in 𝙰𝚂, it will replace
the dominated solution; If it cannot dominate all solutions, the salp will
be added to the 𝙰𝚂.

When the number of solutions in 𝙰𝚂 exceeds |𝐴𝑆|, we invoke the
method of Mirjalili et al. (2017) to remove the redundant solutions
from the dense neighborhood’s non-dominated solutions.

• The maximum distance is 𝑑 = [𝑑1, 𝑑2, 𝑑3] =
[

T𝑚𝑎𝑥−T𝑚𝑖𝑛
|𝐴𝑆| , E𝑚𝑎𝑥−E𝑚𝑖𝑛

|𝐴𝑆| ,
M𝑚𝑎𝑥−M𝑚𝑖𝑛

|𝐴𝑆|

]

, where T𝑚𝑎𝑥, T𝑚𝑖𝑛, E𝑚𝑎𝑥, E𝑚𝑖𝑛, M𝑚𝑎𝑥, and M𝑚𝑖𝑛 are the
maximum and minimum values of the corresponding objectives in
𝙰𝚂, respectively.

• The density of a solution is the number of solutions within the
maximum distance 𝑑 around it.

According to the density, we utilize the Roulette Wheel Strategy (Wu
& Wang, 2018) to eliminate the redundant solution, and select an
individual as the Source food 𝐹 in the same way.
10
Algorithm 4: MSIA
Input: Resource 𝑃 , multi-workflow 𝐺
Output: Archive set 𝙰𝚂
/* Initialize population */

1 Initialize the population with HSA9Fs and random method;
// Algorithms 1, 2 and 3
/* Algorithm optimization */

2 for 𝐼𝑅 ← 1 to |𝐼𝑅| do
/* MSSA */

3 Initialize or update the archive set 𝙰𝚂;
4 𝑐1 ← 2 exp

(

− ( 4𝐼𝑅
|𝐼𝑅| )

2);
5 Choose a Source food 𝐹 from the archive set 𝙰𝚂;
6 for 𝑖 ← 1 to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do
7 if 𝑖 ≤ 𝑝𝑜𝑝𝑠𝑖𝑧𝑒∕2 then
8 Update the salp 𝑥𝑖 by Eq. (33);
9 else
10 Update the salp 𝑥𝑖 by Eq. (34);
11 Shuffle Stage 2 randomly;
12 Let 𝜋𝐶 ← 𝑥𝑖, 𝜋𝐿 ⇔ 𝜋𝐶 ; // SOV rule
13 Calculate the fitness of 𝜋 = [𝜋𝐿, 𝜋𝐴] by Algorithms 2

and 3;
/* IGA */

14 Let �̄� ← 𝜋;
15 for 𝐼𝑅′ ← 1 to 10 do
16 𝜋′, 𝜋′′ ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(�̄�);
17 �̄� ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋′, 𝜋′′);
18 Calculate the fitness of �̄� by Algorithms 2 and 3;
19 if �̄� 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝜋 then
20 Let �̄�𝐿 ⇔ �̄�𝐶 , 𝜋 ← �̄� ; // SOV rule
21 break;

22 Update and output the archive set 𝙰𝚂;

Fig. 5. Illustration of destruction and reconstruction.

4.3.3. Update mechanism of IGA
The Iterative Greedy Algorithm (IGA) was proposed by Ruiz and

Stützle (2007) for flowshop scheduling problem to minimize makespan.
The incumbent solution is partially destroyed at each iteration of IGA,
and the removed elements are greedily reinserted back into the solution
to build a new solution. These two operators are destruction and
reconstruction, respectively. If the new solution can dominate the in-
cumbent solution, the incumbent solution will be replaced. Illustration
of destruction and reconstruction is shown in Fig. 5.

• Destruction. Randomly extract 𝑑 elements from a given sequence
𝜋𝐿 of Stage 1 (or 𝜋𝐴

𝑔𝑙 of Stage 2: tasks of 𝑙th level in workflow
𝐺𝑔) and get two sub-sequences 𝜋′ and 𝜋′′. 𝜋′ are composed of the
extracted elements and 𝜋′′ is composed of the remaining elements. 𝑑
is destruction parameter. For 𝜋𝐿 of Stage 1, 𝑑 is generated randomly
from a discrete uniform distribution 𝑈

[⌈

|𝐿|
|𝐺|

⌉

,2 ×
⌈

|𝐿|
|𝐺|

⌉]

. For each
level 𝜋𝐴

𝑔𝑙 of Stage 2, 𝑑 is generated randomly from a discrete uniform
distribution 𝑈

[

1,
⌈

1 × |

|𝜋𝐴 |
|

⌉]

.
2
|

𝑔𝑙
|
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Table 5
Configurations and prices of VMs in public cloud.

VM Type Processing
Capacity
(GFLOPS)

On-Demand
Cost ($/h)

Bandwidth
(Gbps)a

Transmission
Cost ($/Gb)

1 c3.large 30.8 0.128 1

0.02
2 c3.xlarge 61.6 0.255 1.5
3 c3.2xlarge 123.2 0.511 2
4 c3.4xlarge 242 1.021 3
5 c3.8xlarge 475.2 2.043 3

aManually set according to the VM configuration.

Table 6
Configurations and powers of VMs in private cloud.

VM Type
(Numbers)

Processing
Capacity
(GFLOPS)

Bandwidth
(Gbps)

Dynamic
Power
(W)

Idle
Power
(W)

Transmission
Power (W)

1 (3) 44 1.25 110 10
52 (3) 66 1.75 190 20

3 (4) 96.8 2.5 300 35

• Reconstruction. All extracted elements (𝜋′) are randomly reinserted
one by one into possible positions of 𝜋′′ to form a new complete
sequence.

Consequently, in Algorithm 4, we detail the pseudo-code of our
roposed MSIA. Line 1 is the initialization population. Lines 3–13 are to
pdate the population using MSSA. Lines 14–21 are to further optimize
ndividual using IGA. The relationship between HSA9Fs and MSSA is
iven as follows:

• MSSA is a swarm intelligence optimization algorithm that can get
more non-dominated solutions through population iteration. We use
the solution generated by HSA9Fs as an initial individual of MSSA to
guide the algorithm evolution.

• The encoding of MSSA is the execution sequence of workflow and its
tasks, while its decoding is based on the Resource Selection part of
HSA9Fs.

ur HSA9Fs is a heuristic algorithm, which can only obtain one so-
ution. However, the solution of HSA9Fs lacks the diversity of multi-
bjective optimization, so we employ MSSA to pursue this purpose.
SA9Fs can intelligently select the task to be scheduled and the VM

o execute that task according to the scheduling situation of multiple
orkflows and the current state of the hybrid cloud system. Therefore,
SA9Fs has good coverage in the scheduling process (as proven by the
erformance results in Section 5.3).

. Performance evaluation and results

.1. Simulation environment setup

.1.1. Resource environment
For public cloud, we use 5 representative VM types from low to high

onfiguration, as shown in Table 5. The VM configurations and their
rocessing capacity are based on current Amazon EC2 platform.4 The
old startup time 𝐷𝑢𝑟𝐶 , the warm startup time 𝐷𝑢𝑟𝑊 and the duration
f stopping 𝐷𝑢𝑟𝑃 are set to 55.9s, 34.0s and 5.6s, respectively (Sun
t al., 2022). The shortest duration of hibernation 𝐷𝑢𝑟𝐻 is 60.0s. The
inimum gap between two adjacent hibernation in one instance 𝐺𝑎𝑝𝐻

s 120s. Unit price of VM in hibernation state 𝑀𝐻 (only charge for
lasticIP cost) is 0.005$/h.

4 https://aws.amazon.com/ec2/pricing/on-demand/, https://instances.
antage.sh/
11

W

Fig. 6. Five real-world workflow applications.

For private cloud, we use 3 representative VM types from low to
high configuration, as presented in Table 6. Assume that there are 10
VMs of three types, with 3, 3 and 4 VMs of each type. The VMs are
cold started before executing tasks. Energy consumption is calculated
only for VMs with tasks.

5.1.2. Workflow applications
Five real-world workflow applications with different scales from

different scientific areas are adopted in the simulation (Juve et al.,
2013; Rodriguez & Buyya, 2014; Sahni & Vidyarthi, 2018), as shown in
Fig. 6. All these workflows are generated in the form of Directed Acyclic
Graph in XML (DAX) format by Pegasus WorkflowGenerator (Juve
et al., 2013; Sahni & Vidyarthi, 2018), and are publicly available on
Pegasus website.5 These DAX files contain information such as list
of tasks and dependencies between tasks. More details about these
workflows can be found in Juve et al. (2013).

Each workflow type has 4 scales. Fig. 6(a) Montage has 25, 50,
100, 1000 tasks; Fig. 6(b) Epigenomics has 24, 64, 100 and 997 tasks;
Fig. 6(c) Inspiral has 30, 50, 100 and 1000 tasks; Fig. 6(d) CyberShake
has 30, 50, 100 and 1000 tasks; Fig. 6(e) Sipht has 30, 60, 100 and 1000
tasks. Each workflow has 4 deadline factors from loose to tight. Under
each deadline factor, the privacy tag of task is set with a probability of
20%, and it is also generated 4 times. Therefore, the total number of
workflows is 5 × 4 × 4 × 4 = 320.

We randomly choose the different number of workflows as test
problems to simulate the multi-workflows submitted by users, which
are denoted by |𝐺|_∑|𝐴𝑔

|. The number of workflows |𝐺| ∈ {3,5,7,10}
and the total number of tasks ∑

|𝐴𝑔
| < 1000 constitute Medium-Small-

Scale test problems; the number of workflows |𝐺| ∈ {5,15,25} and
the total number of tasks ∑

|𝐴𝑔
| ≥ 1000 constitute Large-Scale test

problems. There are 4 × 2 + 3 × 3 = 17 groups of test problems.
The following rule (Sahni & Vidyarthi, 2018; Wu et al., 2016) is

used to assign a deadline for workflow. We use the maximum execution
time 𝐸𝑇

𝑔
𝑖 = max

{

𝑤𝑔
𝑖

𝑈 (𝑣𝑃ℎ )
|

|

|

𝑝ℎ ∈ 𝑃 1
}

and the maximum transmission time

𝐶𝑇
𝑔
𝑖𝑗 = max

{

𝑑𝑔𝑖𝑗
𝑏ℎ

|

|

|

𝑝ℎ ∈ 𝑃 1
}

to estimate start time and finish time:

𝑆𝑇
𝑔
𝑖 =

⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝑃 𝑟𝑒(𝑎𝑖) = ∅,

max𝑎𝑗∈𝑃𝑟𝑒(𝑎𝑖)
{

𝐹𝑇
𝑔
𝑗 + 𝐶𝑇

𝑔
𝑗𝑖

}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

�̃�
𝑔
𝑗 = 𝑆𝑇

𝑔
𝑗 + 𝐸𝑇

𝑔
𝑗 .

5 https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+
orkflow+Generator

https://aws.amazon.com/ec2/pricing/on-demand/
https://instances.vantage.sh/
https://instances.vantage.sh/
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
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The deadline is set to:

𝐷𝐿𝑔 = 𝜆 × max
{

𝐹𝑇
𝑔
𝑖
|

|

|

𝑎𝑔𝑖 ∈ 𝐴𝑔
}

, (35)

here 𝜆 ∈ {0.8,1.1,1.5,1.8} is deadline factor.

.2. Baseline algorithms and evaluation metrics

To evaluate the performance of the proposed algorithms, three state-
f-the-art and related multi-objective workflow scheduling algorithms
re implemented for comparison, including MACO (Li et al., 2019),
MPSO (Hafsi et al., 2022), GALCS (Xia et al., 2022). The param-
ter configurations of the compared algorithms are all based on the
uggestions in the corresponding references.

• MACO mainly relies on pheromone matrices and heuristic probability
matrices to generate and update the scheduling solutions. In MACO,
𝛼 = 1, 𝛽 = 10, 𝜌 = 0.2, 𝑄1 = 10, 𝑄2 = 0.1, and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 = 100.

• GMPSO is formed by incorporating NSGAII into MOPSO and applies
a novel solution encoding that represents the task ordering, the task
mapping and the resource provisioning processes of the workflow
scheduling problem in hybrid Clouds. In GMPSO, 𝐿𝑒𝑎𝑑𝑒𝑟𝑠𝑆𝑖𝑧𝑒 = 50,
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5, 𝐺𝑀𝑃𝑎𝑟𝑒𝑛𝑡𝑠 = 50,
𝐺𝑀𝐽𝑢𝑚𝑝 = 3, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 = 100, 𝐶1, 𝐶2 ∈ [1.5,2.5] and 𝑟1, 𝑟2 ∈
[0,1].

• GALCS is combined GA with the longest common subsequence algo-
rithm, aiming to record the favorable gene blocks and to improve the
performance of GA. In GALCS, 𝛿 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 = 30.

In addition to the above algorithms, we also consider the perfor-
mance comparison with two variant algorithms of MSSA and HSA9Fs.

• MSSA1 is encoded and decoded in the same way as MSIA, but
its population is generated randomly during initialization, i.e., the
solution of HSA9Fs is not used to guide the algorithm search.

• MSSA2 is encoded in the same way as MSIA, but decoded using
the following approach: according to the rule of the earliest finish
time (the task will be executed on whichever instance it is finished
the earliest), the private cloud resources will be used first. For non-
sensitive tasks, only when their execution in the private cloud cannot
meet the (sub-)deadline will they lease resources from the public
cloud.

• HSA9Fs is essentially a heuristic algorithm, which obtains solutions
as feasible solutions. Compared with HSA9Fs, we can evaluate the
performance of our heuristic algorithm and the quality of the initial
solution of MSIA.

Neither MSSA1 nor MSSA2 adopts Algorithm 3 to adapt to the cali-
bration task, and their comparison can evaluate the performance of
our proposed Resource Selection Algorithm 2. Algorithm 2 is also
the decoding method of MSIA. We can evaluate the performance of
HSA9Fs and Algorithm 3 (adaptive calibration task) by comparing
them (MSSA1 and MSSA2) with MSIA. In MSIA, MSSA1 and MSSA2,
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 = 30, the total number of iterations |𝐼𝑅| = 100 and the

aximum number of non-dominated solutions |𝐴𝑆| = 20.
We quote the popular and effective method in Li et al. (2022), Pan

t al. (2021) (merging multiple workflows into one large workflow
y adding two virtual nodes), so that algorithms MACO and GMPSO
an solve multiple workflows. To mitigate the effects of experimental
ncertainty, each algorithm is repeated 10 times. For different test
roblems, the given running time of each algorithm is 1.2 ×

∑

|𝐴𝑔
|

seconds. All the simulations are conducted in Python and are executed
on a 64 bit PC with Intel Core i5-9500 3.0 GHz, 32 GB RAM and
Ubuntu 20.04.2 LTS. The source codes are publicly available at https:
//doi.org/10.24433/CO.5717787.v2 and https://github.com/zaixing-
sun/MSIA_PMWS_HC_Public.

In this paper, we have two evaluation metrics to measure the
12

performance of algorithms as follows:
(a) HyperVolume (HV) (Chen et al., 2019; Li et al., 2022; Pan et al.,
2021; Saeedi et al., 2020). HV evaluates the diversity and conver-
gence of an evolutionary algorithm. It is obtained by calculating the
volume of the enclosed area between a set of solutions generated
by the algorithm and a reference point, which is usually selected
as the maximum objective values, e.g., the highest Total Tardiness,
Total Energy Consumption and Total Monetary Cost. Specifically,
we utilize Relative Percentage Deviation (RPD, Eq. (36)) to nor-
malize three objectives values of solutions. The reference point
(1.0,1.0,1.0) can, thus, be used for calculating HV. Hence, the
range of HV is [0,1] and a larger HV value is preferable, which
indicates that the obtained set of nondominated solutions is closer
to the Pareto front and has a desired distribution.

𝑅𝑃𝐷𝐴 =
𝑓𝐴 − 𝑓𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

, (36)

where 𝑓𝐴 is the solution obtained by algorithm A, and 𝑓𝑚𝑖𝑛 and
𝑓𝑚𝑎𝑥 are the minimum and maximum values achieved among all
algorithms, respectively.

(b) Coverage Rate (CR) (Chen et al., 2019; Pan et al., 2021; Wu &
Wang, 2018). This metric is used to compare the archive sets 𝐴𝑆1
and 𝐴𝑆2, which reflects the dominance relationship between the
solutions in the two sets. 𝐶𝑅 is formulated as Eq. (37).

𝐶𝑅(𝐴𝑆1, 𝐴𝑆2) =

|

|

|

|

{

𝑥2 ∈ 𝐴𝑆2
|

|

|

∃𝑥1 ∈ 𝐴𝑆1 ∶ 𝑥2 ≺ 𝑥1

}

|

|

|

|

|𝐴𝑆2|
, (37)

where 𝐶𝑅(𝐴𝑆1, 𝐴𝑆2) represents the proportion of solutions in 𝐴𝑆2
that are dominated by the solutions in 𝐴𝑆1. 𝐶𝑅(𝐴𝑆1, 𝐴𝑆2) >
𝐶𝑅(𝐴𝑆2, 𝐴𝑆1), indicates that 𝐴𝑆1 is better than 𝐴𝑆2 in terms of
convergence under the Pareto Optimal metric. In addition, the
value of 𝐶𝑅 is between 0 and 1, and 𝐶𝑅(𝐴𝑆1, 𝐴𝑆2)+𝐶𝑅(𝐴𝑆2, 𝐴𝑆1)
≠ 1.

.3. Performance results

We analyze these results in terms of HyperVolume, Coverage Rate,
unning time and number of leased VMs in public cloud. The results
re the mean of 10 runs of algorithms.

.3.1. Comparison of HyperVolume
Table 7 shows the comparison of HyperVolume by different al-

orithms. According to the results of HV, MSIA is superior to other
lgorithms in 68.42%(13/19) cases. For Medium-Small-Scale, the HV
riterion of MSIA has improved up to 2.13%, 6.42%, 36.80%, 38.14%,
9.13%, and 74.37% respectively, compared to MSSA1, MSSA2,
MPSO, HSA9Fs, GALCS, and MACO algorithms. For Large-Scale, the
V criterion of MSIA has improved up to 1.31%, 15.17%, 19.74%,
6.15%, and 53.18% respectively, compared to MSSA1, GMPSO,
SA9Fs, MSSA2, and GALCS algorithms. The superiority of MSSA1
ver MSSA2 proves the efficiency of Algorithm 2: ResourceSelection,
hich is particularly evident on Large-Scale. GMPSO outperforms on
arge-Scale than on Medium-Small-Scale. The reasons for the poor
erformance of MACO are: (i) it relies on probability selection and
pends a lot of effort on updating pheromone matrix and probability
atrix; (ii) it is based on the traditional encoding method, and each

ndividual must repair the violation of task execution constraints. These
easons make it difficult for MACO to obtain feasible solutions on Large-
cale within a given time. In addition, based on HSA9Fs, the HV of
SIA is significantly improved, which indicates MSIA further searches

n the global (MSSA) and local (IGA), yielding results with excellent
iversity and convergence.

To capture the performance difference between the algorithms in-
uitively, we make a one-way ANOVA of HV results. Fig. 7 shows the
ean plot of HV with 95.0 percent Tukey HSD confidence intervals

or all algorithms. All p-values are less than 0.05 for Medium-Small-
cale and Large-Scale test problems, indicating that these algorithms

https://doi.org/10.24433/CO.5717787.v2
https://doi.org/10.24433/CO.5717787.v2
https://doi.org/10.24433/CO.5717787.v2
https://github.com/zaixing-sun/MSIA_PMWS_HC_Public
https://github.com/zaixing-sun/MSIA_PMWS_HC_Public
https://github.com/zaixing-sun/MSIA_PMWS_HC_Public
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Table 7
The mean of HyperVolume of different algorithmsa.
|𝐺|_∑|𝐴𝑔

| MACOb GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA

M
ed

iu
m

-S
m

al
l-S

ca
le

3_180 0.095 0.530 0.340 0.808 0.974 0.693 0.803
3_200 0.142 0.542 0.395 0.982 0.850 0.055 0.985
5_330 0.104 0.466 0.543 0.884 0.925 0.727 0.900
5_430 0.086 0.470 0.389 0.911 0.752 0.757 0.952
7_391 0.041 0.380 0.236 0.528 0.506 0.212 0.577
7_394 0.075 0.397 0.306 0.611 0.418 0.392 0.623
10_649 0.001 0.381 0.150 0.877 0.820 0.282 0.904
10_672 0.002 0.384 0.205 0.722 0.733 0.325 0.750
Avg c 0.068 0.444 0.320 0.790 0.748 0.430 0.812

La
rg

e-
Sc

al
e

5_1230 ∖b 0.512 0.266 0.654 0.671 0.366 0.592
5_1300 ∖ 0.436 0.212 0.837 0.797 0.569 0.884
5_3150 ∖ 0.497 0.328 0.445 0.333 0.326 0.462
15_2656 ∖ 0.486 0.135 0.860 0.542 0.445 0.852
15_4681 ∖ 0.564 0.094 0.727 0.350 0.570 0.768
15_5585 ∖ 0.702 0.154 0.769 0.366 0.680 0.811
25_6164 ∖ 0.573 0.118 0.615 0.309 0.523 0.631
25_7984 ∖ 0.505 0.119 0.698 0.242 0.609 0.706
25_10878 ∖ 0.665 0.092 0.582 0.343 0.439 0.598
Avg c ∖ 0.549 0.169 0.688 0.439 0.503 0.701

aBest results are in bold and underlined, and second-best results are in bold.
bMACO cannot output feasible solutions in a given time for large-scale test problems.
Therefore, it is indicated by ‘∖’.
cAvg is the average value of the algorithm based on corresponding scale problems.

Fig. 7. The mean plot of HV with 95.0 percent Tukey HSD confidence intervals.

are statistically significant different at the 95.0% confidence level. For
Medium-Small-Scale, there is no significant difference among MSIA,
MSSA1 and MSA2, but the performance is the best. There was no
significant difference among HSA9Fs, GMPSO and GALCS, but better
than MACO. For Large-Scale, there is no significant difference among
HSA9Fs, GMPSO and MSSA2, but better than GALCS. MSIA and MSSA1,
however, outperform other algorithms significantly at both Medium-
Small-Scale and Large-Scale, owing to our proposed resource selection
method. The performance of MSSA2 dropped obviously on Large-Scale,
indicating that simple rules do not adapt to the complex multi-objective
optimization environments.

To analyze why MSIA performs second-best on the ‘5_3150’ and
‘25_10878’ test problems, we plot the parallel coordinates of the non-
dominated solutions obtained by the various algorithms for these two
problems, as shown in Fig. 8. According to Fig. 8(a), MSIA is superior
to other algorithms in Total Tardiness and Total Energy Consumption,
and inferior to GALCS in Total Monetary Cost. According to Fig. 8(b),
MSIA is superior to other algorithms in Total Tardiness, and inferior
to GMPSO in Total Monetary Cost and Total Energy Consumption.
Compared with GMPSO, MSIA is only slightly worse in Total Monetary
13

Cost. In general, MSIA spends more money on these two test problems
Fig. 8. The Parallel Coordinates Plot of non-dominated solutions obtained from
different algorithms for tri-objective.

in order to complete the workflow as soon as possible. Monetary cost
includes execution cost and communication cost. As HSA9Fs mainly
depends on the time factor during VM selection, ignoring that data
transmission may lead to cost increase.

5.3.2. Comparison of coverage rate
To quantitatively compare the dominance relationships between

MSIA and its peers, we compute Coverage Rate for each test problem,
as shown in Table 8. This table clearly shows that MSIA and HSA9Fs are
superior to other algorithms. Especially, MSIA’s solution can dominate
more than 41% of the solutions of all other algorithms in Medium-
Small-Scale and GMPSO in Large-Scale, but these algorithms rarely
dominate MSIA. Compared with MACO, the Pareto fronts of MSIA and
HSA9Fs can dominate the solution of MACO. Compared with GMPSO,
GMPSO cannot dominate any solution of MSIA and HSA9Fs on all prob-
lems except on ‘5_1230’ and ‘25_10878’ where GMPSO can dominate
a few feasible solutions of MSIA and HSA9Fs, while the Pareto front
of both MSIA and HSA9Fs can dominate some solutions of GMPSO by
at least 39% on average. Compared with GALCS, the Pareto front of
MSIA can dominate the solution of GALCS by more than 62% on the
problems of ‘3_200’, ‘5_330’, ‘5_430’, ‘5_1300’ and ‘15_2656’, while they
can barely dominate each other on other problems. There are several
problems in which the solutions of MSSA1 and MSSA2 dominate MSIA’
better than the solutions of MSIA dominate them, but overall MSIA’s

solution still dominates most of the solutions of MSSA1 and MSSA2.
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Table 8
The mean of Coverage Rate of different algorithmsa.
|𝐺|_∑|𝐴𝑔

| MSIA HSA9Fs

MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MACO GMPSO GALCS MSSA1 MSSA2

M
ed

iu
m

-S
m

al
l-S

ca
le

3_180 0.54/0.00 0.63/0.00 0.11/0.00 0.47/0.25 0.00/0.48 0.25/0.00 0.36/0.00 0.35/0.00 0.07/0.00 0.08/0.25 0.00/0.10
3_200 0.84/0.00 0.96/0.00 0.96/0.00 0.58/0.16 0.90/0.10 0.50/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.50 0.00/0.30
5_330 0.76/0.00 0.96/0.00 0.81/0.00 0.74/0.08 0.27/0.08 0.40/0.00 0.44/0.00 0.59/0.00 0.09/0.00 0.07/0.15 0.02/0.10
5_430 0.66/0.00 0.98/0.00 0.91/0.00 0.55/0.14 0.94/0.00 0.25/0.00 0.66/0.00 0.98/0.00 0.50/0.00 0.02/0.10 0.60/0.00
7_391 0.81/0.00 0.98/0.00 0.00/0.00 0.74/0.07 0.56/0.06 0.50/0.00 0.71/0.00 0.15/0.00 0.00/0.00 0.00/0.50 0.00/0.10
7_394 0.77/0.00 0.90/0.00 0.01/0.00 0.56/0.15 0.93/0.00 0.45/0.00 0.77/0.00 0.31/0.00 0.00/0.00 0.00/0.40 0.39/0.00
10_649 0.50/0.00 0.93/0.00 0.37/0.00 0.44/0.15 0.24/0.14 0.50/0.00 0.10/0.00 0.09/0.00 0.01/0.00 0.00/0.50 0.00/0.50
10_672 0.50/0.00 0.97/0.00 0.10/0.00 0.43/0.18 0.10/0.05 0.50/0.00 0.50/0.00 0.64/0.00 0.00/0.00 0.00/0.50 0.00/0.10
𝐴𝑣𝑔 0.67/0.00 0.92/0.00 0.41/0.00 0.56/0.15 0.49/0.11 0.42/0.00 0.44/0.00 0.39/0.00 0.08/0.00 0.02/0.36 0.13/0.15

La
rg

e-
Sc

al
e

5_1230 ∖ 0.71/0.02 0.00/0.00 0.19/0.46 0.04/0.29 0.45/0.00 ∖ 0.20/0.05 0.00/0.00 0.00/0.50 0.00/0.50
5_1300 ∖ 0.98/0.00 0.62/0.00 0.33/0.18 0.10/0.35 0.05/0.00 ∖ 0.97/0.00 0.16/0.00 0.01/0.00 0.00/0.00
5_3150 ∖ 0.71/0.00 0.00/0.00 0.43/0.14 0.29/0.01 0.50/0.00 ∖ 0.34/0.00 0.00/0.00 0.00/0.45 0.01/0.25
15_2656 ∖ 0.98/0.00 0.82/0.00 0.29/0.32 0.27/0.00 0.50/0.00 ∖ 0.38/0.00 0.07/0.00 0.00/0.45 0.00/0.00
15_4681 ∖ 0.73/0.00 0.00/0.00 0.59/0.09 0.81/0.00 0.00/0.00 ∖ 0.15/0.00 0.00/0.00 0.01/0.00 0.79/0.00
15_5585 ∖ 0.72/0.00 0.48/0.00 0.52/0.10 0.89/0.00 0.50/0.00 ∖ 0.43/0.00 0.00/0.00 0.00/0.45 0.03/0.00
25_6164 ∖ 0.55/0.00 0.00/0.00 0.51/0.08 0.86/0.00 0.45/0.00 ∖ 0.34/0.00 0.00/0.00 0.00/0.25 0.02/0.00
25_7984 ∖ 0.94/0.00 0.00/0.00 0.45/0.16 0.77/0.00 0.45/0.00 ∖ 0.72/0.00 0.00/0.00 0.00/0.35 0.02/0.00
25_10878 ∖ 0.63/0.16 0.02/0.00 0.39/0.14 0.85/0.00 0.40/0.00 ∖ 0.28/0.00 0.00/0.00 0.00/0.25 0.72/0.00
𝐴𝑣𝑔 ∖ 0.77/0.02 0.22/0.00 0.41/0.19 0.54/0.07 0.37/0.00 ∖ 0.42/0.01 0.03/0.00 0.00/0.30 0.18/0.08

aThe meaning of 𝑣𝑎𝑙𝑢𝑒1∕𝑣𝑎𝑙𝑢𝑒2 in the column ’MSIA’: 𝑣𝑎𝑙𝑢𝑒1 is the proportion of MSIA that dominate other algorithms; 𝑣𝑎𝑙𝑢𝑒2 is the proportion of other algorithms that dominate
MSIA. The column ’HSA9Fs’ is similar to this. For example, ’0.54/0.00’ is CR(MSIA,MACO)/CR(MACO,MSIA).
Table 9
Comparisons of running time and numbers of leased public cloud VMs by different algorithms.

|𝐺|_∑|𝐴𝑔
|

Given time
(1.2∑

|𝐴𝑔
|)

Average running time (in second) Average number of leased VMs in public cloud

MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA MACO GMPSO GALCS MSSA1 MSSA2 HSA9Fs MSIA

M
ed

iu
m

-S
m

al
l-S

ca
le

3_180 212.400 217.325 212.498 221.713 105.708 89.386 0.406 201.730 94 81 42 3 3 4 3
3_200 240.000 245.243 240.119 248.637 111.978 110.786 0.306 202.954 83 74 42 4 14 4 3
5_330 385.200 422.293 386.774 423.247 219.955 165.763 0.465 370.628 145 128 76 7 12 6 7
5_430 514.800 576.085 518.474 577.469 471.664 390.386 1.104 472.129 168 152 92 61 41 68 61
7_391 468.000 485.282 471.188 511.530 206.974 174.252 0.448 295.547 86 83 86 21 28 18 20
7_394 470.400 486.405 472.787 524.345 310.539 259.421 0.675 391.558 103 97 85 20 37 26 21
10_649 778.800 1599.890 795.039 894.866 640.028 565.793 1.861 664.872 122 118 136 66 65 90 61
10_672 805.200 1763.263 820.746 980.991 598.180 489.887 1.226 728.641 132 127 129 33 54 35 35
𝐴𝑣𝑔 484.350 724.473 489.703 547.850 333.128 280.709 0.811 416.007 117 108 86 27 32 32 27

La
rg

e-
Sc

al
e

5_1230 1474.800 ∖ 1577.183 2455.390 1384.260 1384.155 11.594 1620.522 ∖ 457 268 341 344 325 339
5_1300 1560.000 ∖ 1642.241 2519.676 1466.746 1466.803 7.601 1477.816 ∖ 424 224 63 107 51 66
5_3150 3780.000 ∖ 5865.300 3800.684 3312.600 3310.139 29.513 3426.182 ∖ 1033 859 268 310 305 275
15_2656 3183.600 ∖ 3923.040 3202.211 3078.217 3078.223 20.573 3146.233 ∖ 401 510 190 297 165 175
15_4681 5575.200 ∖ 11553.736 12120.123 4727.264 4728.001 43.023 6380.175 ∖ 720 1681 283 691 315 289
15_5585 6264.000 ∖ 20205.420 20207.976 6542.074 6540.633 87.052 8520.531 ∖ 1087 2046 464 887 518 493
25_6164 7316.400 ∖ 24625.647 27993.986 6298.594 6303.554 66.396 9099.503 ∖ 587 2189 342 778 297 357
25_7984 9456.000 ∖ 55773.033 61717.007 8067.333 8080.489 88.754 8669.943 ∖ 766 2827 406 1507 258 436
25_10878 12979.200 ∖ 119692.641 162276.473 10619.323 10623.857 160.857 11102.164 ∖ 937 3815 513 1484 320 525
𝐴𝑣𝑔 5732.133 ∖ 27206.471 32921.503 5055.157 5057.317 57.262 5938.119 ∖ 713 1603 319 712 284 329
Except for ‘15_4681’, MSIA and HSA9Fs do not dominate each other,
and MSIA’s solution can dominate HSA9Fs’ on other test problems.

5.3.3. Comparisons of running time and numbers of leased public cloud
VMs

Running time is the key efficiency metric to measure the algorithm.
Furthermore, while the PMWS-HC does not limit the numbers of leased
public cloud VMs, employing fewer VMs reduces the possibility of
failure during scheduling based on better balancing the three objectives
considered. Table 9 shows comparisons of running time and numbers
of leased VMs in public cloud by different algorithms.

Running time. Since HSA9Fs is a heuristic algorithm, it is obvious
that its running time is minimal. The running time of MSIA is higher
than MSSA1 and MSSA2 is theoretically known because MSIA uses
HSA9Fs to generate the initial solution and employs IGA deep search
compared to MSSA1, while MSSA2 uses a simpler decoding method
than MSSA1. For Medium-Small-Scale, the running time of algorithms
MACO, GMPSO, GALCS and MSIA is close to the given time, while
the running times of MSSA1 and MSSA2 algorithms are much less
than the given time because they have reached the given number of
14

iterations. Particularly, the running time of MACO on ‘10_649’ and
‘10_672’ is much longer than the given time. This demonstrates that
with the increase of scale, it becomes more difficult for MACO to get
feasible solutions, which also explains why MACO cannot obtain feasi-
ble solutions on Large-Scale. For Large-Scale, as the scale increases, all
algorithms have varying degrees of growth in almost all test problems
when compared with the given running time. The reason lies in that
with the increase of scale, it is difficult for the algorithms to escape the
local optimum in a larger solution space.

Numbers of leased public cloud VMs (We abbreviate it as ‘VMs
counts’.). Since MSIA, MSSA1 and HSA9Fs adopt the same decoding
method (Algorithm 2: ResourceSelection), their VMs counts are close
and almost minimal compared with other algorithms. Since MSSA2
leases public cloud resources only when the sub-deadline is not met,
it uses a similar VMs counts as MSIA on Medium-Small-Scale, but
uses much more VMs counts than MSIA on Large-Scale, which is very
close to GMPSO. This shows that as the number of tasks increases,
it becomes increasingly difficult to complete tasks on time by relying
only on private cloud resources, and the resource selection methods
that do not consider many scheduling factors cannot actively select
the appropriate resources. The resource selection methods of MACO,
GMPSO, and GALCS all have random characteristics and do not design
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unique evolutionary mechanisms for resource selection, so they always
have a higher VMs counts.

To summarize, the experimental results show that MSIA outper-
forms other algorithms in terms of the diversity and convergence of
solutions, as well as the running time and the numbers of leased public
cloud VMs. That is, the MSIA can better simultaneously trade off the
considered three objectives.

6. Conclusion

In this paper, we propose a nested algorithm MSIA for tri-objective
privacy-aware multi-workflow scheduling in hybrid cloud (PMWS-HC).
To solve PMWS-HC, we devise a novel Heuristic Scheduling Algorithm
based on 9 Factors (HSA9Fs), which makes the scheduling compact and
non-greedy by comprehensively considering various factors such as cur-
rent completion times, urgency, sub-deadline, and etc. For trading off
the three objectives considered, we employ MSSA to search Pareto so-
lution globally, and IGA to search deeply in the neighborhoods of indi-
vidual to improve the quality of the solution. Extensive Medium-Small-
Scale and Large-Scale simulation experiments and comparisons demon-
strate that HSA9Fs and MSIA outperform state-of-the-art scheduling
algorithms in several evaluation metrics. In the future work, we intend
to apply HSA9Fs and MSIA in real-time multi-workflow scheduling.
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