
Evolving Scheduling Heuristics
for Energy-Efficient Dynamic Workflow

Scheduling in Cloud via Genetic Programming
Hyper-Heuristics

Zaixing Sun1,2 , Fangfang Zhang2 , Yi Mei2, Hejiao Huang1, Chonglin Gu1(B) ,
Bin Qian3, and Mengjie Zhang2

1 Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
guchonglin@hit.edu.cn

2 Victoria University of Wellington, Wellington 6140, New Zealand
3 Kunming University of Science and Technology, Kunming 650500, China

Abstract. With the rapid development of cloud computing, the issue of how to
reduce energy consumption has attracted a great deal of attention. Especially
for dynamic workflow scheduling, dependency constraints between tasks and
high quality of service requirements, such as real-time requirements and deadline
constraints, make it very challenging. This paper focuses on the energy-efficient
scheduling problem, which jointly considers the impact of finer-grained tasks with
CPU and memory configurations on energy consumption. A dynamic workflow
scheduling simulator is developed to mimic the scheduling process in real-world
scenarios. Then, we propose a Cooperative Coevolution Genetic Programming
to learn heuristics for both the task selection decision and the instance selection
decision, using the simulator for heuristic evaluation. The scheduling heuristics
obtained by Cooperative Coevolution Genetic Programming evolution can then
be used to make real-time decisions in dynamic environments. The simulation
results show that the proposed method has managed to obtain better scheduling
heuristics than the baseline methods in terms of energy consumption and resource
utilization.

Keywords: Cloud Computing · Dynamic Workflow Scheduling · Genetic
Programming Hyper-heuristics

1 Introduction

With the rapid growth of cloud computing, the energy consumption of data centers is
expected to rise significantly, from 200 terawatt hours (TWh) in 2016 to a staggering
2967 TWh by 2030 [1]. This surge in energy consumption not only increases data
center operating costs, but also exacerbates environmental damage. The workflow is a
popular paradigm for the execution of scientific and industrial applications in cloud and
consists of a set of interdependent tasks, where a task may be connected to one or more

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D.-S. Huang et al. (Eds.): ICIC 2024, LNCS 14862, pp. 169–182, 2024.
https://doi.org/10.1007/978-981-97-5578-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5578-3_14&domain=pdf
http://orcid.org/0000-0003-1660-7790
http://orcid.org/0000-0001-5516-3972
http://orcid.org/0000-0002-9656-6265
https://doi.org/10.1007/978-981-97-5578-3_14


170 Z. Sun et al.

tasks through directed edges. The directed edge usually means execution constraints or
data transfer dependencies between tasks. Efficient workflow management, specifically
focusing on energy-efficient dynamic workflow scheduling, is essential for orchestrating
tasks to optimize performance, reduce costs, and minimize energy consumption in cloud
computing.

Workflow scheduling problems have been extensively studied and various heuristic
algorithms have been proposed. Rodriguez et al. [2] studied dynamic workflow schedul-
ing in cloud. They considered a model in which tasks executed in containers, which in
turn were deployed on virtual machines (VMs). Ye et al. [3] studied the joint off-line
batch workflows and online stream workflows scheduling for minimizing the cost and
improving resource utilization in cloud container services. Although this model takes
advantage of the faster startup of the container than VM, it ignores the elasticity of
the container. Havet et al. [4] reduced energy consumption in clusters by using gen-
erational garbage collection principles, while striving to meet deadline constraints for
all requests as closely as possible. Hu et al. [5] proposed adjustments to task schedul-
ing decisions that balance energy consumption with task execution times in real-time
environments. Stavrinides et al. [6] and Fan et al. [7] studied dynamic workflow schedul-
ing with deadline-constrained and aimed to reduce energy consumption while ensuring
service quality constraints. For system models in [6] and [7], they considered not only
task-to-VM deployment, but also VM-to-host deployment. Their energy consumption
in [6] and [7] was related to the frequency of the VMs and the execution time of the
tasks. Sun et al. [8] focused on the real-time energy-saving multi-workflow scheduling
on container cloud, which considers resource quantity and affinity relationship between
containers and physical machines. However, these studies are limited to the impact of
the amount of computation of the task or the frequency of the VM on the energy con-
sumption, and they do not simultaneously consider the types of tasks with CPU and
memory configurations to execute the tasks in parallel on the VM. There are also no
existing studies that consider the impact of having both CPU andmemory configurations
on energy consumption, which is a more fine-grained study.

Hyper-heuristic [9, 10] is a promising approach for automatically selecting or gener-
ating heuristics to solve hard computational search problems. The goal of this approach
is to explore the “heuristic search space” of the problems instead of the solution search
space in the cases of heuristics and meta-heuristics. Genetic programming as a hyper-
heuristic method was investigated in [11] to evolve scheduling rules. The purpose of
using GPHH is to improve the generalization of scheduling rules by generating new
heuristics using existing heuristics. It has successfully solved many problems in various
fields such as job shop scheduling [12] and workflow scheduling[13, 14]. Traditional
workflow scheduling in cloud usually involves two decisions [15, 16]: the task prioritiza-
tion and the resource selection. Based on these two decisions, two high-level heuristics
are derived to select a ready task and to select a resource to execute the ready task, respec-
tively. Cooperative Coevolution Genetic Programming (CCGP) [17, 18] is a mechanism
for effectively evolving coadapted subcomponents and efficiently learning high-quality
coadapted sub-heuristics.

This paper focuses onmore fine-grainedCPU andmemory configuration of tasks and
establishes an energy-efficient dynamic workflow scheduling (E2DWS) model. When



Evolving Scheduling Heuristics 171

the CPU and memory configuration of tasks are satisfied, multiple tasks can be executed
on the same resource at the same time, which affects the resource utilization rate and
further affects the energy consumption. E2DWS inherits many challenges of workflow
scheduling in traditional cloud, e.g., deadline constraints; determining the scheduling
sequence of tasks. Since we consider the CPU and memory configuration of tasks, this
leads to the following extra challenges in E2DWS: how to ensure that concurrent tasks do
not exceed the VM’s configuration when scheduling the workflow; how to execute tasks
in parallel as much as possible to save energy. To address these challenges, this paper
proposes CCGP to evolve scheduling heuristics for E2DWS. The main contributions of
this work are summarized as follows.

– An energy-efficient dynamicworkflow schedulingmodel is established, which jointly
considers more fine-grained CPU and memory configuration of tasks that affect the
energy consumption.

– We develop a dynamic workflow scheduling simulator to mimic the scheduling pro-
cess in real-world scenarios. Based on the simulator, we propose a CCGP method for
evolving the allocation rules for two levels simultaneously.

– We verify the effectiveness of the proposed CCGP method by comprehensive
empirical study based on real-world data traces.

2 Cloud Workflow Scheduling Model

LetR be the set of heterogeneous computational resources. Each resource r is associated
with a type θ(r) ∈ �, the size of memory �m(r) and the size of CPU �c(r). Let BWAN

be the bandwidth of the wide area network (WAN) and LWAN be the latency of the
WAN. Static power ps(r) includes base power pb(r), CPU-based idle power pic(r) and
memory-based idle power pim(r), where ps(r) = pb(r)+pic(r)+pim(r). Dynamic power
is defined as the difference between full power and idle power, including CPU-based
power pdc(r) = pfc(r)−pic(r) andmemory-based power pdm(r) = pfm(r)−pim(r). LetG
be a set ofworkflowapplications. Eachworkflowg ∈ G contains a set of tasksA(g). Each
task α ∈ A(g) is represented by a tuple {τe(α),μc(α),μm(α),Pre(α),Suc(α)}, where
τ e(α) is the reference execution time, μc(α) is computational resource requirement,
μm(α) is memory resource requirement, Pre(α) ⊆ A(g) is a set of predecessor tasks,
and Suc(α) ⊆ A(g) is a set of successor tasks. d(α1, α2) is the data required to be
transferred from task α1 to its successor task α2 ∈ Suc(α1). The arrival time of the
workflow g is ρa(g), and its deadline is ρd(g).

We formulate the dynamic workflow scheduling as an optimization problem aiming
tominimize the energy consumption and tomaximize resource utilization, which subject
to the following constraints: No task can be executed until all its predecessor tasks have
been completed; Each resource can deploy and run multiple tasks simultaneously, but
the sum of the CPU and memory capacities of the tasks allocated on the resource cannot
exceed the corresponding resource’s capacity at any moment. We assume scheduling as
a discrete-time control problem as standard in previous work [19, 20], i.e., each decision
round as a time slot. At the beginning of each time slot, the Cloud Broker makes task
scheduling and resource deployment and scaling decisions. We divide the timeline into
equal duration time slots T = {0,1, 2, · · · , t, · · · , }, where t is the t th time slot. Let



172 Z. Sun et al.

xs(α) and xf (α) be the execution start time and execution finish time of the task α. Let
y(α) ∈ R be assigned resource of the task α in the schedule. Let νc(α, t) and νm(α, t)
be the sizes of the CPU and memory allocated to the task α at time t.

min E =
∑

t∈T
∑

r∈R
P(r, t) (1)

s.t. : xs(α) ≥ ρa(g),∀g ∈ G, α ∈ A(g), (2)

xf (α) ≤ ρd (g),∀g ∈ G, α ∈ A(g), (3)

{
νc(α, t) = μc(α),∀t ∈ T ,

νm(α, t) = μm(α),∀t ∈ T ,
(4)

{ ∑
∀y(α)=rν

c(α, t) ≤ �c(r),∀r ∈ R,∀t ∈ T ,∑
∀y(α)=rν

m(α, t) ≤ �m(r),∀r ∈ R,∀t ∈ T ,
(5)

xc(α1, α2) =
{

0, y(α1) = y(α2),

LWAN + d(α1,α2)
BWAN

, otherwise,
(6)

xs(α1) + τ e(α) + xc(α1, α2) ≤ xs(α2),∀α2 ∈ Suc(α1), (7)

P(r, t) = ps(r) + pdc(r) × Uc(r, t) + pdm(r) × Um(r, t), (8)

where ∀g ∈ G, ∀α, α1, α2 ∈ A(g), ∀r ∈ R and ∀t ∈ T . Equation (1) is the total
energy consumption. Constraint (2) ensures that the workflow cannot be executed until
it is submitted. Constraint (3) ensures that the workflow is finished before its deadline.
Constraint (4) indicates that the configuration needs to satisfy the requirements of the
task. Constraint (5) indicates that the sum of the CPU and memory capacities of the
tasks allocated on the resource cannot exceed the corresponding resource’s capacity at
time t. Equation (6) is the communication time between each task α1 and its successor
task α2. Constraint (7) is the precedence constraint in a workflow, which indicates that
the task cannot be executed until all of its immediate predecessors have finished and it
has received all of the output data from its immediate predecessors. Equation (8) is the
power of different resources at time t.

3 Discrete Event-Driven Simulation Process

Forfitness evaluation,wedevelop adiscrete event-driven simulationprocesswith the four
rules, which maintains an event queue E sorted with trigger time. Each event E� is asso-
ciated with the event name EN

� , trigger time ET
� , workflow involved EW

� , task involved

EA
� , and service instance involved ES

� . According to the event name, we introduce when

each event is triggered and what will happen when the event is triggered:



Evolving Scheduling Heuristics 173

• WorkflowSubmitted. When: the arrival time of a workflow. What: set the tasks with
no immediate predecessors to ready state. If there are multiple workflow submissions
or multiple tasks that need to be set to ready state, the task selection rule is adopted
to calculate the priority of each task, and the tasks are added to the TaskReady event
queue in ascending order of this priority.

• TaskReady. When: after a workflow has been submitted or all of a task’s immediate
predecessors have been assigned and started to execute. What: select an instance to
execute the task according to the instance selection rule. Once the instance that will
execute the task has been determined, we can determine the start execution time of
the task from the terminals associated with that instance. Add the task to the wait
queue of the instance that will execute it.

• StartExecuteTask.When: after the ready task has received data from all predecessors
and the assigned instance is active. What: remove the task from the wait queue and
add it to the run queue.

• CompleteExecuteTask. When: after the execution of task is finished. What: Remove
the task from the run queue. Trigger the CompleteExecuteWorkflow event if this task
is the last finished task in a workflow.

• CompleteExecuteWorkflow. When: after all the tasks in a workflow have been
finished. What: record that the workflow has been scheduled.

The state of the simulated system, such as the system time, is updated as each event is
triggered, and an event can generate and/or trigger other events. Overall, the simulation
process is scheduled sequentially according to the event queue. The scheduling heuristic
makes a decision on each decision point to make the scheduling process continue.

4 The Proposed Algorithm

4.1 Overview

We propose the CCGP approach to automatically generate the following 2 rules to make
decisions:

• Task selection rule (Rule 1): to select the next ready task to be executed. If there are
multiple tasks ready at the same time, the rule is used to determine the sequence of
tasks.

• Instance selection rule (Rule 2): to select a resource in the cloud to execute the
selected task. First, eliminate the instances that cannot meet the minimum require-
ments of CPU or Memory of the task, and the remaining instances are available.
Second, it filters out the instances that cannot meet the sub-deadline to execute the
task. If no instance remains, then the instance in the cloud with the earliest finish time
is selected to execute the task from all available instances. Otherwise, the instance
selection rule is used to select the instance. In cases where multiple instances have
the same priority, prioritize selecting an existing instance that does not need to be
created.

The training process is performed offline and the trained rules are deployed to make
online scheduling decisions. Figure 1 shows an overview of the training process of



174 Z. Sun et al.

CCGP. CCGP evolves two populations of rules. The evolutionary mechanisms of CCGP
are presented separately as follows.

– Populations initialization. A number of individuals for each population are ini-
tialized by random selecting and combining the terminals and functions with the
ramped-half-and-half method [12].

– Individual evaluation. Given a training instance, we can evaluate the fitness of an
individual (i.e., a combination of the two rules) by applying it to dynamic workflow
scheduling simulator. In each generation, the elitism individuals of two populations
are selected to cooperate with the rules from the other population and to evaluate the
corresponding individuals. At the first generation, we randomly select one represen-
tative rule for evaluation. After fitness evaluation, each individual has a fitness that
represents its quality.

– Parent selection. If the stopping criterion is met, the best individual so far is con-
sidered as the best evolved scheduling heuristic for E2DWS. Otherwise, we use the
tournament selection to select parents for generating offspring.

– Evolution. Evolution employs reproduction, crossover, and mutation. Reproduction
copies top performers directly to the next generation.Crossover involves selecting and
swapping sub-trees between two parents to form new individuals.Mutation replaces
a randomly selected subtree in a parent with a new one, ensuring variety in the
population.

Fig. 1. Overview of CCGP.

4.2 Representation, Terminal Set, and Function Set

To evolve a scheduling heuristic with two rules for E2DWS, an individual is designed
with a tree which represent task selection rule or instance selection rule. We design 21
terminals based on the scheduling process, which indicate the characteristics related to
workflows, tasks, instances, and cloud, to describe the state of the cloud system. Note
that the terminal set is different for each rule, but the function set is the same.



Evolving Scheduling Heuristics 175

Table 1 shows the terminal and function sets of CCGP. We use the symbol “✓”
to mark the terminators that compose the corresponding rule. SD is the sub-deadline
of a task, which is set based on the latest finish time, as shown in Eqs. (9–10). ε is a
random factor within the range [0.95,1]. The smaller the ε, the more urgent the tasks
in a workflow and the smaller the sub-deadline. Following [21], we set ε = 0.95. We
calculate the upward rank of a task following the HEFT [22], which is the length of the
critical path from α1 to the exit task, as shown in Eq. (11).

ι(α1) =
⎧
⎨

⎩
ρ(g), if Suc(α1) = ∅,

max
α2∈Suc(α1)

{
ι(α2) − τ e(α2) − d(α1,α2)

BWAN

}
, otherwise. (9)

SD(α) =
{

ι(α), if Suc(α) = ∅,

ε × ι(α), otherwise.
(10)

UR(α1) =
⎧
⎨

⎩
τ e(α1), if Suc(α1)∅,

τ e(α1) + max
α2∈Suc(α1)

{
UR(α2) + d(α1,α2)

BWAN

}
, otherwise. (11)

Table 1. Terminal and Function sets of CCGP.

No Nation Description Task Instance

1 CA The computational resource
requirement of a task

✓

2 MA The memory resource
requirement of a task

✓

3 NPK The number of direct
predecessors for a task

✓

4 NSK The number of direct successors
for a task

✓

5 SD The sub-deadline of a task ✓

6 UR The upward rank of a task ✓

7 CT The communication time for a
task

✓

8 NKQ The number of tasks in ready
queue

✓

9 NRK The number of unscheduled tasks
in a workflow

✓

10 TETQ The total execution time of tasks
in ready queue

✓

11 TETRK The total execution time of
unscheduled tasks in a workflow

✓

12 ET The execution time of a task ✓ ✓

(continued)



176 Z. Sun et al.

Table 1. (continued)

No Nation Description Task Instance

13 CI The CPU size of an instance ✓

14 MI The memory size of an instance ✓

15 STP The static power of an instance ✓

16 AAT The actual available time of a
instance

✓

17 CTI The communication time of a
task on an instance

✓

18 CRCPU The current remaining CPU of an
instance

✓

19 CRMEM The current remaining memory
of an instance

✓

20 ST The slack time of task, which is
(AAT-SD)

✓

21 CON Constant 0 ✓

Function set +, −, *, protected /, Max, Min ✓ ✓

5 Performance Evaluation and Results

5.1 Simulation Environment Setup

To the best of our knowledge, there has been no such and similar study in the current lit-
erature. To evaluate our proposed algorithm, three benchmark algorithms are employed
and operated under the same running environment with our algorithm: NCGP, Random
and Binpacking. NCGP is a variant of CCGP which does not evolve by co-evolution.
NCGP has only one population and each of its individuals consists directly of two rules.
ComparingwithNCGP,we can find the effect of co-evolution. Practically, NCGP, similar
to the algorithms proposed in [13] and [14], is based on the traditional GP framework.
The algorithms proposed in [13] and [14] need to consider the extra features of our
problem by extending the terminal set so that they become NCGP in our comparison
algorithm. In other words, the comparison algorithmNCGP is essentially the application
of these algorithms to our problem. Random is one of the default scheduling strategy
on the Docker Swarm (version v1.12). Random is to choose randomly from candidate
tasks or instances when making decisions. Binpacking is based on classical HEFT and
Binpacking strategy (one of the default scheduling strategy on the Docker Swarm (ver-
sion v1.12)): task selection is based on upward rank value; instance selection is based
on the utilization of instances to make the resources as busy as possible in order to save
resources.

In simulation experiment, we assume that the customer can lease an unlimited num-
ber of resources. We use 5 representative VM types from low configuration to high



Evolving Scheduling Heuristics 177

Table 2. Configurations of Cloud Severs.

Type m1.small m3.medium m3.large m3.xlarge m3.2xlarge

ECU 1 3 6.5 13 26

Memory (GB) 1.7 3.75 7.5 15 30

CPU-based idle power 0.72 0.87 1.73 3.47 6.94

CPU-based full power 5.76 6.97 13.94 27.87 55.74

Memory-based idle power 0.34 0.75 1.5 3 6

Memory-based full power 1.02 2.25 4.5 9 18

Base power 1.2 1.4 2.9 5.8 11.5

configuration. The VM configurations and their processing capacity are based on cur-
rent Amazon EC2 platform1 and Teads Engineering2 (which provide a Carbon footprint
estimator for AWS instances), as presented in Table 2. As for the booting time of VM,
the cold startup time is set to 55.9s [15]. The latency of the WAN delay LWAN is set to
0.0005s. The Bandwidth BWAN is set to 2GB/s. We consider the real cluster data released
by cloud computing vendors. The cluster data released by Alibaba in 20183 contains the
DAG information of workflow that obtains the interdependence between tasks, which
is very consistent with the purpose of this study. Therefore, we select Alibaba cluster-
trace-v2018 in this study. We extract 1200 DAG structures from the trace, where each
DAG has at least 10 nodes. Although these public data pro-vide the DAG structure and
the execution time of each task, we need to construct data applicable to our problems
based on the known information. The input and out-put data of each task is assigned by
a uniform discrete distribution between 500 and 5000 MB. Each DAG’s deadline factor
is randomly selected from the set {0.8,1.0,1.5,1.8}. Workflow arrival is modeled using
the Poisson distribution with an arrive rate λ where the interarrival time is exponentially
distributed with 1/λ, where λ ∈ {0.1,0.2,0.5,0.8,1.0}. We partition the 1200 DAGs into
5 datasets, {200, 100, 200, 300, 400}. We randomly select 10% the workflows from
these 5 datasets to simulate dynamic scenarios.

We implement the simulation and algorithms in Python 3.10 and deploy it on a
computer with a 3.80 GHz Intel Core i7-10700K processor and 15.3 GB of memory.
The parameters of the CCGP are shown in Table 3. For all the compared algorithms, 30
independent runs are done for each scenario and the evolved scheduling heuristics are
tested on 30 unseen instances. The average objective value across the 30 test instances
is reported as the test performance of the rule, which can be a good approximation
of the true performance of the rules. Along with 30 independent runs, Friedman’s test
and Wilcoxon rank-sum test with a significance level of 0.05 are used to examine the
performance of algorithms. The “−”, “+”, and “≈” indicate that the corresponding result

1 https://aws.amazon.com/cn/ec2/instance-types/
2 https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/
3 https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md.

https://aws.amazon.com/cn/ec2/instance-types/
https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md


178 Z. Sun et al.

is significantly better than, worse than, or similar to its counterpart. An algorithm will
be compared with the algorithm(s) before it one by one.

Table 3. The parameter settings of CCGP and NCGP

Parameter Value

Population size 50 for each subpopulation/100 for NCGP

Number of generations 50

Method for initializing population Ramped-half-and-half

Initial minimum/maximum depth 2/7

Elitism 5

Maximal depth 8

Crossover rate 0.8

Mutation rate 0.15

Reproduction rate 0.05

Parent selection Tournament selection with size 7

Terminal/non-terminal selection rate 10%/90%

5.2 Results

Based on the our model, we also can get the total resource utilization:

U =
∑

t∈T
∑

r∈R(Uc(r, t) + Um(r, t))

2 × |T | × |R| (12)

Uc(r, t) =
∑

∀y(α)=rν
c(α, t)

�c(r)
, (13)

Um(r, t) =
∑

∀y(α)=rν
m(α, t)

�m(r)
, (14)

Equations (13) and (14) are the CPU-based resource utilization and memory-based
resource utilization, respectively. The total resource utilization is also an importantmetric
to measure the performance of the algorithm.

Table 4 shows the mean and standard deviation of the total energy consumption
on the test data of 30 independent runs of CCGP and baseline methods for different
scenarios. Overall, CCGP is the best algorithm because it significantly outperforms other
algorithms on all scenarios and always gets the least energy consumption. Random and
Binpacking are not significant on several scenarios, furthermore,CCGP is over 30%more
energy efficient than either of these two default scheduling strategies. For the training
scenario based on <20, 0.2>, we can observe that the scheduling heuristic obtained



Evolving Scheduling Heuristics 179

by CCGP evolution still has strong adaptive ability with the change of the number
of workflows. For the training scenario based on <20, 0.5>, we can observe that the
scheduling heuristic obtained by CCGP evolution still has strong adaptive ability with
the change of arrival rate. Compared to NCGP, CCGP saves 20% energy consumption,
suggesting that cooperative coevolution among populations can improve population
optimization search.

Table 4. The mean (standard deviation) total energy consumption on the test data of 30
independent runs of CCGP and baseline methods for different scenarios

Training
Scenario

<wfNum,
λ>*

Random Binpacking NCGP CCGP

<20,
0.2>

<10,
0.2>

6.54(3.60) 6.00(3.17)(−) 2.41(0.44)(−)(−) 1.80(0.08)(−)(−)(−)

<20,
0.2>

13.70(6.05) 13.44(6.96)(≈) 5.50(0.95)(−)(−) 4.26(0.71)(−)(−)(−)

<30,
0.2>

19.74(8.38) 19.33(7.93)(≈) 7.48(1.32)(−)(−) 5.63(0.31)(−)(−)(−)

<40,
0.2>

28.25(8.10) 28.18(8.11)(≈) 12.08(1.83)(−)(−) 9.45(0.44)(−)(−)(−)

<20,
0.5>

<20,
0.2>

13.70(6.05) 13.44(6.96)(≈) 5.44(0.91)(−)(−) 4.25(0.72)(−)(−)(−)

<20,
0.5>

13.60(6.12) 13.43(6.04)(≈) 5.39(0.92)(−)(−) 4.08(0.17)(−)(−)(−)

<20,
0.8>

14.26(6.60) 13.06(6.61)(−) 5.41(0.89)(−)(−) 4.12(0.18)(−)(−)(−)

<20,
1.0>

13.92(6.57) 13.02(6.11)(≈) 5.40(0.89)(−)(−) 4.12(0.19)(−)(−)(−)

* wfNum is the total number of workflows submitted and λ is the arrival rate

Table 5 shows the mean and standard deviation of the total resource utilization
on the test data of 30 independent runs of CCGP and baseline methods for different
scenarios. Overall, CCGP is the best algorithm because it significantly outperforms
other algorithms on all scenarios and always achieves the highest resource utilization.
The results also show that for all scenarios, the resource utilization of all algorithms
does not vary with the change of workflow or the change of arrival rate. CCGP also
improves resource utilization by 20% compared to NCGP, which is consistent with the
saved energy consumption. Although Binpacking greedily selects resources with high
resource utilization to deploy tasks, one possible reason for its lower resource utilization
is that it does not have a better balance of both CPU and memory dimensions at the same
time, which can result in more resources being requested.



180 Z. Sun et al.

Table 5. Themean (standard deviation) total resource utilization on the test data of 30 independent
runs of CCGP and baseline methods for different scenarios

Training
Scenario

<wfNum,
λ>

Random Binpacking NCGP CCGP

<20,
0.2>

<10, 0.2> 0.17(0.04) 0.15(0.04)(+) 0.47(0.12)(−)(−) 0.59(0.03)(−)(−)(−)

<20, 0.2> 0.17(0.03) 0.15(0.02)(+) 0.47(0.11)(−)(−) 0.60(0.03)(−)(−)(−)

<30, 0.2> 0.15(0.03) 0.14(0.03)(+) 0.49(0.13)(−)(−) 0.61(0.04)(−)(−)(−)

<40, 0.2> 0.16(0.02) 0.14(0.02)(+) 0.50(0.13)(−)(−) 0.62(0.04)(−)(−)(−)

<20,
0.5>

<20, 0.2> 0.17(0.03) 0.15(0.02)(+) 0.48(0.11)(−)(−) 0.61(0.03)(−)(−)(−)

<20, 0.5> 0.16(0.03) 0.15(0.03)(≈) 0.48(0.11)(−)(−) 0.61(0.03)(−)(−)(−)

<20, 0.8> 0.16(0.02) 0.15(0.03)(≈) 0.48(0.11)(−)(−) 0.61(0.03)(−)(−)(−)

<20, 1.0> 0.16(0.02) 0.15(0.02)(+) 0.48(0.10)(−)(−) 0.61(0.03)(−)(−)(−)

6 Conclusions

This paper establishes an energy-efficient dynamic workflow scheduling model that
considers the impact of finer-grained taskswith both CPU andmemory configurations on
energy consumption.We develop a dynamicworkflow scheduling simulator tomimic the
scheduling process in real-world scenarios, which employs three scheduling heuristics to
make decisions at three decision points to keep scheduling going. The proposed CCGP
can evolve both the task selection rule and the instance selection rule simultaneously to
meet these decision points. In the experimental study, the real-world cloud workflows
traces are used as the training and test cases. The simulation results show that the high-
level heuristics evolved by the proposed CCGP algorithm can improve more than 20%
in terms of energy consumption and resource utilization. In the future, we plan to extend
our method by utilizing multi-objective optimization techniques to optimize both cost
and energy consumption of the heuristics. Furthermore, we will investigate the impact
of different types of workflows on the performance of the scheduling heuristics learned
by the CCGP, e.g., in terms of complexity, data transfer requirements, or task execution
time.

Acknowledgments. This work was supported by the Shenzhen Science and Technology Program
under Grant No.GXWD20220817124827001, and No. JCYJ20210324132406016.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Katal, A., Dahiya, S., Choudhury, T.: Energy efficiency in cloud computing data centers: a
survey on software technologies. Clust. Comput. 26, 1845–1875 (2023)



Evolving Scheduling Heuristics 181

2. Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scientific
workflow as a service platforms. Futur. Gener. Comput. Syst. 79, 739–750 (2018)

3. Ye, L., Xia, Y., Yang, L., Yan, C.: SHWS: stochastic hybrid workflows dynamic scheduling
in cloud container services. IEEE Trans. Autom. Sci. Eng. 19, 2620–2636 (2022)

4. Havet, A., Schiavoni, V., Felber, P., Colmant, M., Rouvoy, R., Fetzer, C.: GENPACK: a
generational scheduler for cloud data centers. In: 2017 IEEE International Conference on
Cloud Engineering, pp. 95–104. IEEE (2017)

5. Hu, B., Cao, Z., Zhou, M.: Scheduling real-time parallel applications in cloud to minimize
energy consumption. IEEE Trans. Cloud Comput. 10, 662–674 (2022)

6. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, QoS-aware and cost-effective schedul-
ing approach for real-time workflow applications in cloud computing systems utilizing DVFS
and approximate computations. Futur. Gener. Comput. Syst. 96, 216–226 (2019)

7. Fan, G., Chen, X., Li, Z., Yu, H., Zhang, Y.: An energy-efficient dynamic scheduling method
of deadline-constrained workflows in a cloud environment. IEEE Trans. Netw. Serv. Manage.
20, 3089–3103 (2023)

8. Sun, Z., Li, Z., Gu, C., Huang, H.: An energy-efficient scheduling method for real-time multi-
workflow in container cloud. In: Wu, W., Guo, J. (eds.) COCOA 2023. LNCS, vol. 14461,
pp. 168–181. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-49611-0_12

9. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Socy. 64,
1695–1724 (2013)

10. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Survey on genetic programming and machine
learning techniques for heuristic design in job shop scheduling. IEEE Trans. Evol. Comput.
28, 147–167 (2023)

11. Miyashita, K.: Job-shop scheduling with genetic programming. In: Proceedings of the
2nd Annual Conference on Genetic and Evolutionary Computation. pp. 505–512. Morgan
Kaufmann Publishers Inc., San Francisco (2000)

12. Zhang, F., Nguyen, S., Mei, Y., Zhang, M.: Genetic Programming for Production Scheduling.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4859-5

13. Xu, M., et al.: Genetic programming for dynamic workflow scheduling in fog computing.
IEEE Trans. Serv. Comput. 16, 2657–2671 (2023)

14. Yang, Y., Chen, G., Ma, H., Zhang, M.: Dual-tree genetic programming for deadline-
constrained dynamic workflow scheduling in cloud. In: Troya, J. et al. (eds.) ICSOC 2022.
LNCS, vol. 13740, pp. 433–448.Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
20984-0_31

15. Sun, Z., Zhang, B., Gu, C., Xie, R., Qian, B., Huang, H.: ET2FA: a hybrid heuristic algorithm
for deadline-constrained workflow scheduling in cloud. IEEE Trans. Serv. Comput. 16, 1807–
1821 (2023)

16. Zhu, Q.H., Tang, H., Huang, J.J., Hou, Y.: Task scheduling for multi-cloud computing subject
to security and reliability constraints. IEEE/CAA J. Automatica Sinica. 8, 848–865 (2021)

17. Xiao, Q.Z., Zhong, J., Feng, L., Luo, L., Lv, J.: A cooperative coevolution hyper-heuristic
framework for workflow scheduling problem. IEEE Trans. Serv. Comput. 15, 150–163 (2022)

18. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling poli-
cies for dynamic multi-objective job shop scheduling via co-operative coevolution genetic
programming. IEEE Trans. Evol. Comput. 18, 193–208 (2014)

19. Tuli, S., Casale, G., Jennings, N.R.: MCDS: AI augmented workflow scheduling in mobile
edge cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 33, 2794–2807 (2022)

20. Ma, X., Zhou, A., Zhang, S., Li, Q., Liu, A.X., Wang, S.: Dynamic task scheduling in cloud-
assisted mobile edge computing. IEEE Trans. Mob. Comput. 22, 2116–2130 (2023)

https://doi.org/10.1007/978-3-031-49611-0_12
https://doi.org/10.1007/978-981-16-4859-5
https://doi.org/10.1007/978-3-031-20984-0_31


182 Z. Sun et al.

21. Sun, Z., Huang, H., Li, Z., Gu, C., Xie, R., Qian, B.: Efficient, economical and energy-saving
multi-workflow scheduling in hybrid cloud. Expert Syst. Appl. 228, 120401 (2023)

22. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 260–274
(2002)


	Evolving Scheduling Heuristics for Energy-Efficient Dynamic Workflow Scheduling in Cloud via Genetic Programming Hyper-Heuristics
	1 Introduction
	2 Cloud Workflow Scheduling Model
	3 Discrete Event-Driven Simulation Process
	4 The Proposed Algorithm
	4.1 Overview
	4.2 Representation, Terminal Set, and Function Set

	5 Performance Evaluation and Results
	5.1 Simulation Environment Setup
	5.2 Results

	6 Conclusions
	References


