
1998 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Virtual Machine Placement for Minimizing Image
Retrieval Cost and Communication Cost

in Cloud Data Center
Xin Chen, Chonglin Gu , Xiaoyu Gao, Yanyu Shen, Zaixing Sun , and Hejiao Huang

Abstract—In virtual machine (VM) deployment, the physical
machine (PM) usually first retrieves VM image files from the
central image server through block transfer, and the VM image
retrieval and communication are the two main factors that
consume network bandwidth resources, In this paper, we propose
a heuristic-based algorithm to minimize both image retrieval cost
and communication cost for VM placement in a fat-tree network.
It consists of three phases: PM clustering, VM partitioning, 1) We
first cluster the PMs based on the possible longest communication
distance, which is estimated by a pre 2) To reduce the traffic
between PM clusters, a semidefinite programming algorithm is
used to place the coarsened VMs to PM Here coarsening means
packing the resources of smaller VMs as a whole, so as to
accelerate the solving process. 3) In each PM cluster, the VMs
are mapped to PMs one by one, and the VMs with common
blocks and communication traffic between each other are more
likely to be placed together. Extensive simulations show that our
algorithm is more effective and efficient than the state-of-the-art.

Index Terms—Virtual machine placement, VM image retrieval,
communication, cost, minimize, cloud data center.

I. INTRODUCTION

IAAS has become one of the most important paradigms
for cloud computing. The computing resources like CPU,

memory, storage and network are encapsulated in the form
of a virtual machine (VM), which can be deployed through
a file named VM image (VMI). To achieve high performance
and scalability, many applications are deploying their modules
or components into multiple VMs simultaneously, which
may lead to a single-point bottleneck to the VMI backend
storage [1]. Besides, the VMs may frequently communicate
with each other, consuming network resources in the data
center [2].

When a VM is to be deployed, its host will first retrieve the
corresponding VMI from the backend storage. However, the

Manuscript received 19 January 2023; revised 22 November 2023; accepted
2 January 2024. Date of publication 8 January 2024; date of current version
15 April 2024. This work is financially supported by Shenzhen Science
and Technology Program under Grant No. GXWD20220817124827001 and
No.JCYJ20210324132406016. The associate editor coordinating the review of
this article and approving it for publication was X. Fu. (Corresponding author:
Hejiao Huang.)

The authors are with the School of Computer Science and Technology and
the Guangdong Provincial Key Laboratory of Novel Security Intelligence
Technologies, Harbin Institute of Technology (Shenzhen), Shenzhen
518000, China (e-mail: chenxin2017@stu.hit.edu.cn; guchonglin@hit.edu.cn;
21s051035@stu.hit.edu.cn; 21s151079@stu.hit.edu.cn; szx_1010@
stu.hit.edu.cn; huanghejiao@hit.edu.cn).

Digital Object Identifier 10.1109/TNSM.2024.3351148

size of VMI is usually very large, ranging from several GBs to
tens of GBs. Hence, the retrieval of VMI is a challenging issue
since image download not only consumes network resources
but also incurs high latency [3]. It has been found that
there is a considerable number of duplicate blocks between
images of the same or similar operating systems [4]. In view
of this, the existing work mainly adopts methods such as
deduplication and caching in VM deployment, so that the
number of retrieved image blocks can be reduced. Therefore,
the VMs with more common blocks should be placed as close
as possible.

In the real scenario, VMs belonging to the same application
will continually communicate with each other, which may
cause high communication cost if they are dispersely placed
on different PMs. The data to be transferred may pass through
many physical switches considering the network topology,
which may take up more network resource. The communica-
tion cost of the data center is dependent not only on the traffic
volume, but also on the switch hops for each data transfer.
Therefore, proper placement of VMs is significant for reducing
the overall communication cost.

In fact, three-layer fat-tree topology has been widely used
in cloud data center since it can deliver scalable bandwidth
at a moderate cost [5]. Fig. 1 is an example of a three-layer
fat-tree network consisting of switches and PMs. The switches
at different layers are called access switches, aggregation
switches and core switches, respectively. The PMs in the same
rack will be connected to the same access switch, the PMs
in the same pod will be connected to the same aggregation
switch, and the PMs in different pods will communicate with
each other through the core switch. The topological distance
between two PMs can be defined as the minimum number of
switches hops in between.

Taking into account of both VMI retrieval and VM com-
munication, we aim to optimize the network cost for VM
placement in a fat-tree network in cloud data center. The
problem is formulated as a multi-objective optimization, the
solution of which can be divided into the following three
phases: PM clustering, VM partitioning and VM-PM mapping,
as introduced in the following:

1. PM Clustering. To reduce the scale of the problem, we
first cluster the PMs into groups and only concern the
inter-cluster communication cost. In the fat-tree topology,
a PM cluster could be a single PM, all PMs in the same
rack, or all PMs in the same pod. The size of a PM cluster

1932-4537 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9656-6265
https://orcid.org/0000-0003-1660-7790
https://orcid.org/0000-0002-2030-957X

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 1999

Fig. 1. The architecture of fat-tree topology.

is estimated by the longest communication distance of
two PMs based on a pre-placement scheme like First Fit.
To avoid all VMs being placed in one cluster, the cluster
size should not be too large. Considering the sharing of
common blocks among the VMs in the same PM, the
cluster size should not be too small.

2. VM Partitioning. To minimize the inter-cluster commu-
nication cost, we allocate the coarsened VMs onto PM
clusters, which consists of two parts:
1) VM Coarsening. To accelerate the partitioning, VMs
are coarsened in an iterative manner, until the number
of coarsened VMs does not exceed a certain thresh-
old. Here coarsening means packing the resources of
smaller VMs as a whole. The VMs with high com-
munications, high VMI similarity, and low physical
resource requirements are more likely to be coarsened
together.
2) Partitioning. To optimize the inter-cluster commu-
nication cost, the problem of minimizing inter-cluster
communication costs can be formulated as an integer
programming problem, which can further be converted
into a semidefinite programming problem by relaxing
constraints. The solution of semidefinite programming
indicates the proximity of coarsened VMs, and the VMs
with larger proximity should be placed in the same
cluster. VM partitioning is achieved by placing coarsened
VMs onto PM clusters. The PM cluster is selected if the
communication cost increment is the least after placing
the coarsened VM into it.

3. VM-PM Mapping. Through VM partitioning, the coars-
ened VMs are allocated into PM clusters, based on
which we further map each original VM onto a PM
in the cluster. VM-PM Mapping is concerned not only
with intra-cluster communication cost but also with
VMI retrieval cost. That is, the VMs with high com-
munication and high VMI similarity should be placed
as near as possible. We use a maximal spanning tree
to determine the order of VM placement. The exe-
cution of VM-PM Mapping in different clusters are
independent of each other, so it can be executed in
parallel.

The main contributions of this paper include:
• We establish a network cost aware placement model,

which simultaneously considers the VMI retrieval cost
and VM communication cost in IaaS cloud.

• We first propose PM clustering to simplify the design
of the algorithm, so as to optimize the network cost of
inter-cluster and intra-cluster, respectively.

• We propose VM partitioning, which leverages the char-
acteristics of fat-tree topology and utilizes a semidefinite
programming model to minimize the communication
between different PM clusters. Through VM coarsening,
the solving of semidefinite programming can be signifi-
cantly accelerated.

• Extensive experiments are conducted to show that the
overall performance of our algorithm is superior to state-
of-the-art works while with high stability.

The rest of this paper is organized as follows. Section II
reviews the related works. In Section III, the modeling and
formulation of our problem will be given in detail. Section IV
describes our proposed three-phase VM placement algorithm
in detail. In Section V, we set up the experiments and make
evaluations. Section VI concludes the whole paper.

II. RELATED WORK

Based on the optimization objective of VM placement, the
related studies can be classified into two categories: VMI
retrieval cost and VM communication cost.

A. VMI Retrieval Cost

Jayaram et al. [4] first investigated the similarity of VM
images. They found that in a VM file, there is a group of
duplicate data blocks, which can be used in caching, evicting
and prefetching. In addition, even using a simple fixed-size
partitioning scheme, different images may share the same
blocks, especially those having the same operating systems.
Such characteristics can be exploited to design better VMI
storage and management system, in order to achieve less trans-
ferred data, less startup latency and better storage efficiency.
VDN [6], VMTorrent [7] and VMThunder [8] store the VMI
in the distributed backend storage and retrieves blocks from
multiple storage nodes. In the procedure of VM deployment,
VDN used a greedy manner to select PM that has the highest
content similarity to the VMI to be deployed. VMTorrent and
VMThunder utilized P2P and Copy-on-Write mechanism to
provision many VMs simultaneously. Xu et al. [9] studied
the VM image storage architecture in the cloud platform.
Combining the advantages of centralized image storage with
distributed image storage, a novel zone-based image storage
scheme is proposed. The authors proposed to dynamically
update the zone, so as to improve the throughput, latency
and the redundancy of storage. Darrous et al. [10] studied the
VMI retrieval over the heterogeneous wide-area network and
proposed network-aware geo-distributed VMI management
system, along with chunk scheduling algorithm.

To further reduce the VMI retrieval cost and fully uti-
lize the potential of VMI storage system, some research
tried to optimize the transferred data during the proce-
dure of VM placement, thus reducing the startup latency.
Björkqvist et al. [11] proposed a data source selection strategy
and caching strategy in the content cloud, aiming to reduce
retrieval latency. Li et al. [12] formulated the Minimized VMI

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2000 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

File data Transferred Problem (MVFDT problem). The authors
proved the NP-hardness of the problem and proposed heuristic
algorithm to solve it, namely Balance Placement. In [13],
they further improved the time performance of the former
algorithm. Zhang et al. [14] is also concerned with the VMI
similarity between VMs in the process of VM placement.
Moreover, they jointly consider the placement of VMs and
VMIs to minimize VM startup latency.

VMI retrieval cost is also a great concern in VM migration.
This is because during the process of VM live storage
migration, all information such as the virtual disk images
and snapshot information must be migrated to the destination
servers, summing up to tens of GBs. About 80 to 95 percent
of the size is the virtual disk images and snapshots [15].
Thus, many research tried to reduce the cost introduced by
VM image transferring. For example, Al-Kiswany et al. [16]
proposed a migration service named VMFlockMS, attempting
to locally access and deduplicate the images and data in
a distributed fashion with minimal requirements imposed
on the cloud API to access the VM image repository.
Addya et al. [17] formulated the time consumption for trans-
ferring VMIs as part of optimization objectives in the process
of VM migration.

B. VM Communication Cost

Many works have been dedicated to reducing the commu-
nication cost, which can be divided into two catagories by the
algorithms used: (1) the works that first try to partition VMs
into disjoint subsets (min K-cut algorithm, heuristic algorithm,
and approximation algorithm), and then deploy these subsets
into PMs (recursive approach, heuristic algorithm). (2) the
other category of the works mainly utilize meta-heuristic
algorithms to directly determine which VM will be assigned
to which PM, and make optimization in an iterative way.

There has been studies that formulated the minimized
communication problem as a minimized K-cut problem. Such
works utilized minimized K-cut algorithms to partition VMs,
and then mapped VM partition to each PM iteratively.
Meng et al. [18] computed Gomory-Hu and divided VMs
into different cluster. Zhao et al. [19] used similar approach
to do VM clustering, and they further considered the design
of topology and link provisioning. However, their model was
designed for scenarios in which the hosts have a consis-
tent number of slots, thus the VMs must have homogenous
resource requirement. Furthermore, with dense traffic matrix,
the Gomory-Hu graph can be star graph, which is not effective
for VM clustering.

Various heuristic algorithms have been proposed for map-
ping VMs to PMs. Omer et al. [20] adopted a heuristic
strategy based on a minimum spanning tree to allocate the
VMs considering the energy consumption, resource utilization
and communication cost. Sadegh et al. [21] ranked all racks
and then selected racks based on a linear programming
model. Biran et al. [22] greedily placed the VMs on the
PMs that lead to the minimum value of the maximum cut
load. Lian et al. [23] aimed to reduce the maximum link
utilization, and proposed a heuristic algorithm based on graph

theory, but they assumed all the VMs have the same resource
requirement. In those works, various approaches have been
introduced to rank VMs or PMs, and greedily minimized
both communication cost and other objectives. However, these
works only considered communication between VMs when
optimizing network usage, ignoring common VMI blocks
between VMs.

There has been extensive research that leverage multi-
objectives meta-heuristic algorithm to directly place VMs
on PMs. Such works usually jointly optimize VM com-
munication cost and other objectives, such as energy
consumption, resource utilization and number of active PMs.
Guerrero et al. [24] reduced both energy consumption and
communication cost through non-dominated sorting genetic
algorithms-II (NSGA-II). Farzai et al. [25] reduced both
power consumption and VM communication cost through a
hybrid multi-objective genetic-based algorithm. Parvizi and
Rezvani [26] utilized NSGA-III to jointly reduce the overall
resource loss, power consumption and the number of active
PMs. Karmakar et al. [27] proposed an ant colony optimization
algorithm to consolidate VMs in real-time. Wei et al. [28]
used an adaptive ant colony method to reduce power con-
sumption and communication in VM placement. However,
meta-heuristics are too time-consuming to be used in practice
when VM scale is very large. To the best of our knowledge,
non of those research jointly consider both VM communica-
tion cost and VMI retrieval cost so as to reduce the overall
network consumption.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the problem formulation
of VM placement in fat-tree network topology in IaaS cloud
data center. Then, the properties of the three-layer fat tree are
analyzed.

A. Scenario

In our scenario, a VM request is a deployment demand for
an application, which consists of multiple VMs. During the
process of VM deployment, the PMs needs to retrieve the
corresponding VMI files to boot VMs. After all the VMs are
booted, they may communicate with each other to perform
certain function.

While the communication pattern among VMs may expe-
rience dynamic and frequent changes over time, there is
some literature indicating that the extent of this variation is
relatively limited. For example, Meng et al. [18] conducted
an analysis of data center traces and discovered that the
traffic generated by each VM remains relatively stable over
longer time intervals. For the majority of VMs (82%), the
standard deviation of their traffic rates is no more than two
times the mean. In another work, Mann et al. [29] collected
data from a real data center hosting 17,000 VMs. This
dataset contained snapshots of network traffic taken at 15-
minute intervals spanning over a 5-day duration, capturing
aggregate incoming and outgoing network traffic for each
VM. The research indicated that the majority of VMs exhibit
a consistent and relatively stable percentage of traffic with

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2001

TABLE I
NOTATIONS AND DEFINITIONS

minimal variance. Therefore, it is reasonable to approximate
the actual traffic matrix by utilizing the mean value of the
traffic between VMs, and the communication cost can be easily
calculated.

We make the following assumptions:
• A VM request comprises multiple VMs belonging to the

same application, and our scheduling is executed in the
granularity of each request.

• According to [18], [29], the variation of communication
pattern between two VMs is relatively limited. Therefore,
it is reasonable to use the mean value to represent the
traffic between two VMs. The traffic matrix is provided
by VM request.

• The topology of cloud data center is fat-tree topology,
which has been widely used in real data center.

• In our scheduling, all the PMs are homogeneous.

B. Problem Formulation

Table I shows the notations and definitions to be used in
this paper. When there is a VM request arriving in IaaS cloud,
we first place different VMs onto the PMs considering VMI
retrieval cost and communications cost. To boot up a VM,
the host PM needs to retrieve VMI blocks from the central
image server. Since the VMI of the same or similar operating
system may share common blocks with each other, there is
no need to repeatedly transfer the same blocks onto a PM.
Assuming all VMI files have been split into fixed-size blocks
and deduplicated in the central image server. Thus, the network
cost can be optimized by leveraging VMI similarities in VM

placement. Considering the communications between VMs,
the network cost can further be optimized.

A request may consist of multiple VMs, which can be
denoted as a set V = {v1, v2, . . . , vm}. For each VM vi , it
can be represented by a tuple (vmem

i , vcpui , vbandi , v image
i),

where vmem
i , vcpui , and vbandi denote the memory, CPU and

bandwidth resource requirement of ith VM respectively, and
v
image
i denotes the set of image blocks of ith VM. According

to [18], [29], the traffic rates for a large proportion of VMs
are relatively stable. Let Tm×m denote the average traffic
rate matrix between VMs, and Ti ,j denote the average traffic
rate between vi and vj . Let P = {p1, p2, . . . , pm} denote
the set of all PMs in the data center, and the index of PM
is determined by its position in fat-tree topology. For each
PM pk , it can be represented by a tuple (pmem

k , pcpuk , pbandk),
where pmem

k , pcpuk and pbandk denote the memory, CPU and
bandwidth resource of kth PM respectively.

In fat-tree topology, the switches at different layers are
called access switch, aggregation switch and core switch,
respectively. Let r and p denote the number of PMs in a
rack and pod, respectively. Suppose each switch has K ports,
for each access switch, half of these K ports are connected
with the PMs in the same rack, while the remaining half are
linked to K/2 aggregation switches within the same pod. A pod
consists of K

2 racks, thus having p = K 2

4 PMs in total. A data

center has K pods and n = K 3

4 PMs in total. The topological
distance matrix between PMs are denoted as Dn×n . Let Dk ,l
denote the topological distance between PMs pk and pl , it
is the minimum number of switches to pass through. For a
fat-tree with parameter K, we have:

Dk ,l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, k = l

1, � k−1r � = � l−1r �
3, � k−1r � �= � l−1r � ∧ � k−1p � = � l−1p �
5, � k−1p � �= � l−1p �

∀k , l ∈ {1, . . . ,n}
Fig. 1 is an example of a three-layer fat tree with K = 4,

which coincides with the above formula. That is, the topo-
logical distance between different PMs under the same rack,
under the same pod but in different racks, and under different
pods are 1, 3 and 5, respectively.

Given a set of VMs V, we try to place the VMs onto a
set of PMs P, so that both of the VMI retrieval cost and VM
communication cost can be minimized. The problem is named
as a Minimized Network Cost VM Placement (MNCVMP),
which is formulated as follows:

Minimize:
n∑

k=1

∣
∣
∣
∣
∣
∣

⋃

Xi,k=1

v image
i

∣
∣
∣
∣
∣
∣

Minimize:

m∑

i=1

m∑

j=i+1

n∑

k=1

n∑

l=1

Xi ,k ·Xj ,l ·Dk ,l · Ti ,j

Subject to:
n∑

k=1

Xi ,k = 1, ∀i ∈ {1, . . . ,m} (1)

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2002 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

m∑

i=1

Xi ,k · vmem
i ≤ pmem

k , ∀k ∈ {1, . . . ,n} (2)

m∑

i=1

Xi ,k · vcpui ≤ pcpuk , ∀k ∈ {1, . . . ,n} (3)

m∑

i=1

Xi ,k · vbandi ≤ pbandk , ∀k ∈ {1, . . . ,n} (4)

In this formulation, objective 1 is to minimize the total
number of blocks to be transferred to the PMs, reflecting the
VMI retrieval cost. Objective 2 is to minimize the sum of the
product of data transfer and topological distance, reflecting
communication cost. Constraint (1) ensures that each VM is
provisioned on one and only one PM. Constraint (2), (3)
and (4) ensure that the resources such as memory, CPU and
bandwidth in each PM are sufficient for the VMs placed
onside.

C. The Property of Fat-Tree Topology

In this part, we will prove an important property of fat-
tree’s topology matrix, which will be used for algorithm design
in Section IV-C. For fat-tree, the distance matrix Dn×n can
be represented by a linear combination of a positive definite
matrix Sn×n . By leveraging the property of positive definite,
we can use semidefinite programming to solve the problem
of minimizing communication cost. In our transformation,
Sn×n = 1 − Dn×n

max(D)
. Sn×n is a symmetric positive definite

matrix, as proved in Theorem 1.
Theorem 1: Sn×n is positive definite.
Proof:

Sk ,l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, k = l

0.8, � k−1r � = � l−1r �
0.4, � k−1r � �= � l−1r � ∧ � k−1p � = � l−1p �
0, � k−1p � �= � l−1p �

∀k , l ∈ {1, . . . ,n}
Sn×n 	 0 (Sn×n is positive definite) if and only if the

eigenvalues of Sn×n are all positive. Since Sn×n is block
diagonal matrix, Sn×n 	 0 if and only if Ap×p 	 0, where

Sn×n =

⎛

⎜
⎝

Ap×p
. . .

Ap×p
︸ ︷︷ ︸

K

⎞

⎟
⎠

Ak ,l =

⎧
⎨

⎩

1, k = l

0.8, � k−1r � = � l−1r �
0.4, otherwise

Let Bp×p = Ap×p −0.4 (element-wise subtraction), where

Bk ,l =

⎧
⎨

⎩

0.6, k = l

0.4, � k−1r � = � l−1r �
0, otherwise

Ap×p is positive definite if we can prove Bp×p is positive
definite for any non-zero vector x ∈ R

p . That is:

xTAp×px = xT
(
Bp×p + 0.4

)
x

= xTBp×px + 0.4 · (x1 + · · ·+ xp
)2

Bp×p 	 0⇒ xTBp×px > 0

⇒ xTAp×px > 0

⇒ Ap×p 	 0

Therefore, we need to prove that Bp×p is positive definite.
Bp×p is also a block diagonal matrix, the diagonal element is
Cr×r , and Bp×p 	 0⇔ Cr×r 	 0.

Bp×p =

⎛

⎜
⎝

Cr×r
. . .

Cr×r
︸ ︷︷ ︸

K
2

⎞

⎟
⎠.

Ck ,l =

{
0.6, k = l
0.4, otherwise

Let Er×r = Cr×r − 0.4, where

Ek ,l =

{
0.2, k = l
0, otherwise

In the same way, Er×r 	 0 ⇒ Cr×r 	 0. It is obvious that
Er×r is positive definite because it is a diagonal matrix with
all diagonal elements to be 0.2. Thus, we have:

Er×r 	 0⇒ Cr×r 	 0⇔ Bp×p 	 0

⇒ Ap×p 	 0⇔ Sn×n 	 0

Therefore, Sn×n is positive definite for any fat-tree topology
with K-ports switches.

IV. THE PROPOSED ALGORITHMS

In this section, we will introduce our three-phase algorithm
for minimized network cost VM placement problem.

A. Overview of the Algorithms

It has been proven that the problems of minimized VMI
placement and minimized communication placement are NP-
hard [12], [27], and it is extremely complicated when the scale
of VMs is very large. It is hard to simultaneously optimize
both of the objectives since they may trade off with each
other. For example, the two VMs with high communications
can be placed on the same PM to reduce communication
costs, but it may cause high retrieval cost if their VMIs are
distinct. For ease of solving, we decompose the problem into
inter-cluster and intra-cluster scopes through dividing the PMs
into different clusters considering the fat-tree structure of the
network. On the one hand, the scale of the problem can be
reduced and independent parts can be optimized in parallel.
On the other hand, the two objectives (minimized VMI
retrieval cost and minimized VM communication cost) can be
decoupled and optimized from different scopes, respectively.

Algorithm 1 gives the overview of our proposed algorithm,
which mainly consists of three parts: (1) PM cluster-
ing. (2) VM partitioning. (3) VM-PM mapping. In Line1,
PMClustering algorithm tries to find the most suitable gran-
ularity to divide the PMs into Clusters, and then calculates
the distance matrix among Clusters (denoted as D ′). In Line2,

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2003

Algorithm 1: Three-Phase VM Placement

Input : V = {v1, . . . , vm}: set of VMs;
P = {p1, . . . , pn}: set of PMs;
Tm×m : matrix of VM’s data transfer volume;
Dn×n : matrix of PM’s topological distance;

Output: Xm×n : 0-1 matrix for VM-PM mapping.

1 (Clusters,D ′)← PMClustering(V ,P ,T ,D);
2 Y ← VMPartitioning(V ,T ,Clusters,D ′);
3 X ← 0;
4 foreach cluster ∈ Clusters do
5 VMs← {i | Yi,cluster = 1, i ∈ {1, . . . ,m}};
6 X ← VM-PM-Mapping(VMs, cluster,T ,D ,X);

the VMs are partitioned into Clusters with minimum inter-
cluster communication cost. In intra cluster scope, VMs in
each cluster will be allocated onto PMs (Line4 ∼ Line7)
through VM-PM-mapping considering the retrieval cost and
communication cost. In real scenario, the mapping in different
clusters can be executed in parallel.

B. PM Clustering Algorithm

In data center network, the traffic with the longest dis-
tance may contribute much to the communication cost, even
becoming its bottleneck. Therefore, we try to reduce the
long-distance hops by partitioning PMs into clusters with
the least communications. It is the VMs with the longest
communication distance that determines the size and scope
of each PM cluster. Therefore, we use a pre-placement like
First Fit as an approximation to find out the possible longest
distance, which will then be used for PM clustering.

Considering the structure of fat-tree, a PM cluster could be
a single PM, all PMs in the same rack, or all PMs in the same
pod. Therefore, the PMs will be divided into clusters of the
same size. However, the size of the cluster may significantly
affect the performance of the whole algorithm. Too large (all
PMs in one cluster) or too small cluster size (each PM is a
cluster) will make our optimization inefficient.

Algorithm 2 shows PM clustering in detail. To determine
cluster size, we estimate the possible longest distance among
the VMs based on a simple pre-placement scheme like First
Fit (Line1 ∼ Line2). The longest distance reflects the com-
munications of clusters, which includes three cases (Line3 ∼
Line8): if there are cross-pod communication, each pod is a
cluster; else if there are cross-rack communication, each rack
is a cluster; otherwise, each PM is a cluster. Finally, we can
get the topological distance matrix for Clusters (Line9).

C. VM Partitioning

After PM clustering, we try to partition the VMs into PM
clusters considering the VMI retrieval cost and communication
cost. VM partitioning includes two steps: VM coarsening and
partitioning, as introduced in the following.

1) VM Coarsening Algorithm: To efficiently partition the
VMs into PM clusters, we first merge smaller VMs as a
whole, which is called coarsening. A coarsened VM is a

Algorithm 2: PM Clustering Algorithm

Input : V = {v1, . . . , vm}: set of VMs;
P = {p1, . . . , pn}: set of PMs;
Tm×m : matrix of VM’s data transfer volume;
Dn×n : matrix of PM’s topological distance;

Output: Clusters = {c1, . . . , cn ′}: set of PM clusters;
D ′n ′×n ′ : matrix of PM clusters’ distance.

1 X ′ ← pre-Placement(V ,P);
2 longestDist ← findLongestDistance(X ′,T ,D);
3 if longestDist == 5 then
4 Clusters ← Divide PMs into clusters by pod;
5 else if longestDist == 3 then
6 Clusters ← Divide PMs into clusters by rack;
7 else
8 Clusters ← {{p1}, . . . , {pn}};
9 D ′ ← Get the topological distance of Clusters;

set of ordinary VMs, and we can reduce the problem scale
by partitioning the coarsened VMs into PM clusters. Our
coarsening is based on two heuristic rules:

1. VMs with high communication volume and high VMI
similarity should be put together.

2. VMs with low resources will be put together with high
priority.

It is obvious that the first rule can cut down the commu-
nications and the number of image blocks to be transferred
within the cluster. The second rule can efficiently reduce the
problem scale for partitioning.

Algorithm 3 describes the process of VM coarsening in
detail. In this algorithm, the coarsened VM set U is initialized
as sets of VM set, each with a single VM (Line1). The algo-
rithm coarsens VMs in an iterative way (Line2 ∼ Line17)
until the number of coarsened VMs is less or equal to the
threshold THLD, or the coarsening cannot continue due to
the physical resource constraint (Line3 ∼ Line5,Line8 ∼
Line9). Let clusterMem, clusterCPU and clusterBand denote
the maximum memory, CPU and bandwidth resources of
all the PMs in each cluster. The resource of all coars-
ened VM should not exceed a certain of portion (α) of
clusterMem, clusterCPU and clusterBand (Line3, Line11).
To find the first candidate for coarsening (Line7), we sort
the VMs in descending order of the metric wi , which is
defined as:

wi =

∑
j T

′
i,j

θ · norm(
ucpu
i

)
+ λ · norm(

umem
i

)
+ ω · norm(

uband
i

)

where norm(·) means normalization. That is, those VMs with
relatively high total traffic and low resource demand will be
coarsened first. Note that, if the candidate coarsened VM
at the head of the sorted queue cannot find another one to
coarsen, we will choose a new candidate until coarsening could
happen (Line7 ∼ Line13). Find all possible VMs that can be
coarsened with the first selected one (Line11), and then select

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2004 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Algorithm 3: VM Coarsening Algorithm

Input : V = {v1, . . . , vm}: set of VMs;
Tm×m : matrix of VM’s data transfer volume;
Clusters = {c1, . . . , cn ′}: set of PM clusters;

Output: U = {u1, . . . , um ′}: set of coarsened VMs;
T ′m ′×m ′ : matrix of data transfer volume among
coarsened VMs.

1 U ← {u | u ← {v}, v ∈ V };
2 while |U | > THLD do
3 U0 ← {u | umem < α · clusterMem, ucpu <

α · clusterCPU , uband < α · clusterBand , u ∈ U };
4 if U0 == ∅ then
5 return;

6 Queue ← sortallcoarsenedVMsin U0 in
descending order of wi ;

7 while True do
8 if Queue == ∅ then
9 return;

10 ui ← pop(Queue);
11 U1 ← {uj | uj ∈ Queue, umem

j + umem
i ≤

α · clusterMem, ucpu
j + ucpu

i ≤
α · clusterCPU , uband

j + uband
i ≤ α · clusterBand};

12 if U1 �= ∅ then
13 break;

14 uj ← argmaxuj∈U1
wi ,j ;

15 u ← ui ∪ uj ;
16 U ← U ∪ {u}\{ui , uj };
17 T ′ ← Get data transfer volume matrix of U;

the one with largest wij , which is defined as follows:

wi,j =
norm

(
T ′

i,j

)
+ norm

(
|uimage

i ∩ uimage
j |

)

θ · norm
(
ucpu
j

)
+ λ · norm

(
umem
j

)
+ ω · norm

(
uband
j

)

That is, the VM with relatively low resource demand, high
communication and high VMI similarity with the first VM
will be selected (Line14). After that, the two selected VMs ui
and uj are coarsened as one VM u, and finally U and T ′ are
updated correspondingly (Line15 ∼ Line17). Here n ′ and m ′
are the number of PM clusters and the number of coarsened
VMs, respectively.

2) Partitioning: We try to partition the coarsened VMs
into the PM clusters, so that the total communications among
PM clusters can be minimized. We first define n ′ vectors
{a1, a2, . . . , an ′} corresponding to the n ′ PM clusters. For

each ak ∈ R
n ′

, ‖ak‖ = 1 and 〈ak , al 〉 = 1− D ′
k,l

max(D ′) , ∀k , l ∈
{1, . . . ,n ′}. We then define m ′ vectors {y1, y2, . . . , ym ′}
corresponding to the m ′ coarsened VMs, for each yi ∈
{a1, . . . , an ′}. Thus, it can be formulated into an Integer
Programming problem:

Minimize:
∑

i

∑

j

T ′
i,j

(
1− 〈yi , yj 〉

)

Subject to: yi ∈ {a1, . . . , an′}, ∀i (5)

∑

j

C ·max{〈yi , yj 〉 − d , 0} · umem
j ≤ clusterMem, ∀i (6)

∑

j

C ·max{〈yi , yj 〉 − d , 0} · ucpu
j ≤ clusterCPU , ∀i (7)

∑

j

C ·max{〈yi , yj 〉 − d , 0} · uband
j ≤ clusterBand , ∀i (8)

In this formulation, our goal is to minimize the total commu-
nications among the clusters, which is 1

2

∑
i

∑
j T
′
i ,jD

′
i ,j =

1
2

∑
i

∑
j T
′
i ,j ·max (D ′)(1− 〈yi , yj 〉). The communication

between each pair of ui and uj is calculated twice, so we
multiply 1

2 . In this formula, if the coarsened VMs ui and
uj belong to the same PM cluster, then 〈yi , yj 〉 = 1 and
there is no inter-cluster communication. If ui and uj belong to
different PM clusters, then the communication cost between
ui and uj is T ′i ,j max(D ′)(1−〈yi , yj 〉). Note that, 1

2max (D ′)
is a constant when PM clustering is done, so we only need
to optimize

∑
i

∑
j T
′
i ,j · (1− 〈yi , yj 〉). In constraints (6), (7)

and (8), C is equal to max(D’). d is equal to 1 − 1
C . If the

coarsened VMs ui and uj belong to the same PM cluster,
C · max{〈yi , yj 〉 − d , 0} = 1 and we can get the total
CPU, memory and bandwidth of all the coarsened VMs in
the cluster, which should not exceed the maximum resources
of this cluster. If ui and uj belong to different PM clusters,
〈yi , yj 〉 ≤ d , max{〈yi , yj 〉 − d , 0} = 0 and the constraints
still hold.

As mentioned above, we have defined n ′ vectors corre-
sponding to the PM clusters, and now we need to prove the
existence of {a1, a2, . . . , an ′}. From Section III-B, we know
matrix Sn×n = 1 − D

max(D)
is positive definite for any fat

tree with topology matrix Dn×n . An important property of a
symmetric positive definite matrix is that it can be decomposed
into two multiplied matrices through Cholesky decomposi-
tion. That is, Sn×n = AT

n×n × An×n , where An×n =
(a1, a2, . . . , an), so we have Sn×n = Gram(a1, a2, . . . , an).
Note that, the column vectors of An×n should also satisfy:

Sk ,l = 〈ak , al 〉 = 1− Dk ,l

max (D)
, ∀k , l ∈ {1, . . . ,n}

Sk ,k = ‖ak‖ = 1, ∀k ∈ {1, . . . ,n}
It means that we can construct a matrix Sn×n given

the fat-tree structure, and therefore get the column vectors
(a1, a2, . . . , an) of An×n through Cholesky decomposition.
The technique can easily be extended to PM clusters with dis-
tance matrix D ′, which is also a block diagonal matrix like D.
Therefore, there exists vectors {a1, a2, . . . , an ′} corresponding
to the PM clusters.

However, this Integer Programming problem can not be
solved in polynomial time, so we relax it into an SDP
(semidefinite programming) problem by replacing yi by zi
where zi is a vector of dimension n ′ such that ‖zi‖ = 1 and
0 ≤ 〈zi , zj 〉 ≤ 1, ∀i , j ∈ {1, . . . ,m ′}. The formulation of the
SDP problem is described as follows:

Minimize:
∑

i

∑

j

T ′i ,j
(
1− 〈zi , zj 〉

)

Subject to: ‖zi‖ = 1, ∀i ∈ {1, . . . ,m ′} (9)

0 ≤ 〈zi , zj 〉 ≤ 1, ∀i , j ∈ {1, . . . ,m ′} (10)

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2005

Algorithm 4: Partitioning Algorithm

Input : U = {u1, . . . , um}: set of coarsened VMs;
T ′m ′×m ′ : matrix of data transfer volume among
coarsened VMs;
Clusters = {c1, . . . , cn ′}: set of PM clusters;
D ′n ′×n ′ : matrix of clusters’ topological distance;

Output: Ym×n ′ : matrix of 0-1 decision variables for
partitioning VMs to PM clusters.

1 Z ← SDPsolver(U ,T ′,Clusters ,D ′);
2 vmQueue ← MST(U ,Z);
3 X ′ ← 0;
4 foreach ui ∈ vmQueue do
5 pmQueue← sort Clusters in descending order of δi,k ;
6 while pmQueue �= ∅ do
7 ck ← pop(pmQueue);
8 if umem

i ≤ cmem
k ∧ ucpui ≤ ccpuk

∧ubandi ≤ cbandk then
9 X ′i ,k ← 1;

10 foreach vj ∈ ui do
11 Yj ,k ← 1;

12 break;

∑

j

C ·max{〈zi , zj 〉 − d , 0}umem
j ≤ clusterMem, ∀i (11)

∑

j

C ·max{〈zi , zj 〉 − d , 0}ucpuj ≤ clusterCPU , ∀i (12)

∑

j

C ·max{〈zi , zj 〉 − d , 0}ubandj ≤ clusterBand , ∀i (13)

To describe SDP using matrix notations, we define an m ′×
m ′ positive semidefinite matrix Z where Zi ,j = 〈zi , zj 〉.

Thus, the problem formulation becomes:

Minimize: trace
(
T ′ × (1− Z)

)

Subject to: Z ∈ Sm ′
+ (14)

0 ≤ Zi ,j ≤ 1, ∀i , j (15)

C ·maximum(Z − d , 0) × umem ≤ clusterMem · 1 (16)

C ·maximum(Z − d , 0) × ucpu ≤ clusterCPU · 1 (17)

C ·maximum(Z − d , 0) × uband ≤ clusterBand · 1 (18)

Constraint (14) and (15) ensure that Z is an m ′ dimensional
symmetric positive semidefinite with elements in range [0, 1].
Constraint (16), (17), (18) ensure that the total resource of the
coarsened VMs in the same cluster will not exceed the max
resources of the cluster.

The solution Z is obtained by semidefinite programming
solver Mosek [30]. Each element Zi ,j in Z reflects the
proximity of the coarsened VMs ui and uj , and Zi ,j is 1 if
they are placed in the same cluster. To generate a feasible
partitioning from the Z, we propose a heuristic-based algorithm
using a maximum spanning tree (MST) as in Algorithm 4.

Algorithm 4 shows the process of partitioning. The semidef-
inite programming solver finds a solution Z with minimum

Algorithm 5: VM-PM Mapping Algorithm
Input : VMs: set of VMs allocated to current cluster;

PMs: set of PMs in current cluster;
T: matrix of VMs’ data transfer volume;
D: matrix of PMs’ topological distance.

Output: X: matrix of 0-1 decision variables for the
VM-PM mapping.

1 B ← commonBlockMatrix(VMs);
2 T c ← extract traffic matrix for current cluster from T;
3 G ← normalized(B) + normalized(T c);
4 vmQueue ← MST(VMs ,G);
5 foreach vi ∈ vmQueue do
6 pmQueue← sort PMs in descending order of δi,k ;
7 while pmQueue �= ∅ do
8 pk ← pop(pmQueue);
9 if vmem

i ≤ pmem
k ∧ v

cpu
i ≤ p

cpu
k

∧vbandi ≤ pbandk then
10 Xi ,k ← 1;
11 break;

inter-cluster communication (Line1). Then, we use a maxi-
mal spanning tree to determine the allocation order of the
coarsened VMs (Line2). For each coarsened VM, sorts the
PM clusters in descending order of δi ,k (Line4 ∼ Line5), as
defined as follows:

δi ,k =
∑

j /∈vmQueue

∑

l

X ′j ,lD ′k ,lT
′
i ,j

in which δi ,k is the total communication cost between the
coarsened VM ui that placed in cluster k with all other
allocated coarsened VMs. The PM cluster with smallest δi ,k
but having enough resources will be selected to host ui
(Line7 ∼ Line9), in which X ′i ,k is the boolean variable to
describe whether the coarsened VM i is allocated to cluster k.
Meanwhile, the partitioning relation of all the VMs in ui will
be updated (Line10 ∼ Line11). This process repeats until all
the coarsened VMs have been allocated.

D. VM-PM Mapping Algorithm

After partitioning, the coarsened VMs have been allocated
to a PM cluster. In this part, we will place each original VM
to a PM in each cluster, as shown in Algorithm 5. To reduce
network cost in the cluster, we construct a normalized matrix
that reflects the VMI retrieval and communication among the
VMs in the cluster, which can also be regarded as a graph.
Thus, we can use maximum spanning tree on this graph to
determine the placement order of VMs, and allocate the VMs
one by one to PMs.

Algorithm 5 presents the process of VM-PM mapping.
Line1 computes the matrix B of the number of common VMI
blocks between each pair of VMs in the current cluster, and
Line2 extracts the matrix T c of the data transfer volume of
the VMs in the current cluster. Then, a matric G is generated
by combining the two normalized matrices, and then perform

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2006 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

TABLE II
GCP GENERAL-PURPOSE MACHINE FAMILY FOR COMPUTE ENGINE

MST on it, so that the VMs with high VMI similarity and
high communication cost is more likely to be placed together
(Line3). For each VM, sorts the PMs in descending order of
δi ,k (Line5 ∼ Line6), which is defined as:

δi ,k =
∑

j /∈vmQueue

∑

l

Xj ,lD
c
k ,lT

c
i ,j

δi ,k is the total communication cost between VM vi with
other allocated VMs if it is placed on PM k. The PM
with smallest δi ,k and enough resources is selected to host
vi (Line8 ∼ Line11), where Xi ,k describe whether vi is
allocated to pk . The process continues until all VMs have been
allocated onto PMs in the current cluster.

V. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the performance of our algorithms, our sim-
ulations are conducted based on the following setup. The
evaluation focuses on three main metrics: VM communication
cost, VMI retrieval cost and execution time.

1) PMs and Data Center Network Setup: Suppose there is
a cloud data center having 128 PMs, each is configured with
1024 CPU (vCPU cores), 1024GB memory and 1024Gbps
bandwidth. All the PMs are connected through a fat-tree
network with 8-ports switches (K = 8).

2) VM Requests: The characteristics of VMs are collected
from Google Cloud Platform’s C3D machine types [31], as
shown in Table II. A request is composed of VMs with
different types obeying uniform distribution. Fifty different
images are chunked into blocks of 64KB, and the VMI
files are Zipf distributed [32]. The traffic between VMs is
normalized into the range of [1, 100] and the traffic is also
Zipf distributed [33].

3) Baseline Algorithms: Five algorithms are used as a
baseline for comparison.
• First Fit is a simple scheme that places VM on the first

PM that can meet the resource requirement.
• JointPT [20] is a heuristic algorithm that optimizes

communication cost by a maximum spanning tree.
• Balance [12] optimizes VMI retrieval cost by leveraging

the OS types and VMI similarity between VMs.

TABLE III
THE PARAMETERS USED IN THE EXPERIMENT

• ILS (Iterated Local Search) [34] tries to search local opti-
mum considering only communication cost by moving
and swapping VMs.

• SDP adapts the model proposed in Section IV-C2 and
tries to estimate the global optimum for the communica-
tion cost among VMs.

4) Performance Metrics: We are mainly concerned with
three performance metrics of algorithms in various experiment
scenarios.
• VM communication cost: the sum of the product of com-

munication traffic and the topological distance between
virtual machines.

• VMI retrieval cost: the total number of transferred VMI
blocks.

• Execution time: the algorithm’s finish time minus its start
time.

Other parameters in our experiment are listed in Table III.

B. Performance of One Time Placement (Scenario1)

To evaluate the performance of our method, we first consider
the scenario of one time placement that happens in the initial
scheduling when all PMs have no VMs running onside. One
time placement schedules the VMs in a request, the scale
of which can range from 100 to 800. In our simulation,
the number of VMs can’t exceed 800 due to the limit of the
resources of PMs in our setting, and it also ensures that
the result can be obtained within a limited time especially for
the time-consuming algorithms like ILS and SDP.

Fig. 2 compares the performance of different algorithms
with VM scale (number of VMs) in one time placement.
In this figure, (a1), (b1) and (c1) show the comparisons in
metrics such as VM communication cost, VMI retrieval cost,
and execution time’s logarithm with radix 10, respectively. For
ease of analysis, (a2), (b2), and (c2) are the comparisons of
relative metrics against First Fit, respectively.

It can be found from Fig. 2(a1) and (a2) that SDP and our
method perform best in VM communication cost but SDP has
much higher VMI retrieval cost and much longer execution
time than that of our method. In Fig. 2(b1) and (b2), Balance
has the smallest VMI retrieval cost in comparison since it is
designed to optimize the transferred VMI blocks. However,
it has a higher communication cost (very close to that of
FirstFit) while with a longer execution time compared with
our method. For JointPT, the communication cost and VMI
retrieval cost are both close to that of FirstFit when the number
of VMs becomes larger. Overall, our method performs best
even under different VM scales in the scenario of one time
placement, achieving around 20% ∼ 30% reduction in VM
communication cost and 40% reduction in VM retrieval cost

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2007

Fig. 2. Comparisons of different algorithms with VM scale in one time placement (Scenario1).

Fig. 3. The component of traffic in the data center.

against FirstFit. The execution time of our method is 5 ∼ 20
seconds for VMs with scale 100 ∼ 800.

Fig. 3 shows the portions of the traffic with different dis-
tances (number of switch hops) in each algorithm, respectively.
For instance, SPD_0, SDP_1, SDP_3, SDP_5 are the ratios of
topological distances of 0, 1, 3 and 5 for SDP, respectively.
In this figure, we have several observations:
• In our simulation, the ratio of inter-pod traffic (with

5 hops) grows with the scale of VMs, meaning that the
traffic with the longest distance may contribute much to
the communication cost especially when the scale of VMs
is large.

• The ratio of inter-pod traffic for SDP, ILS and our
method are obviously less than First Fit, indicating that

longest-distance traffic is reduced greatly by the three
methods.

• Compared with SDP_0 and SDP_1, the proportion of Our
Method_0 and Our Method_1 is higher because the SDP
in our method is used to optimize the longest distance
traffic (with 5 hops) only.

C. Performance of VM Placement With Sequential Arriving
Requests (Scenario2)

We also consider the scenario when there is a sequence
of 60 requests, each containing 300 VMs running, and the
resources of the VMs in an allocated request will be released
after a period when the third subsequent request arrives. This
experiment can be used to evaluate the performance and
the stability of different algorithms with the arrival of new
requests. Fig. 4 uses box plot to display the performance of
different algorithms with sequential arriving requests. Fig. 4(a)
compares algorithms’ distributions of communication cost. It
can be found that ILS and SDP have the least communication
cost, but with high VMI retrieval cost and execution time. In
Fig. 4(b), Balance has the best performance in VMI retrieval
cost, but with higher communication cost and execution time
than that of ours. In Fig. 4(c), it can be found that the
execution time of ILS and SDP are significantly longer than
other algorithms. Therefore, it can be concluded that our
method has sub-optimal communication cost and retrieval cost,
but it can solve the problem in a much shorter time.

D. Varying the Number of Switch’s Port K

PM clustering is an important step in the design of our
method, which is influenced by the number of ports in each

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2008 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 4. Comparisons of different algorithms with sequential arriving requests (Scenario2).

Fig. 5. Simulation results of the proposed algorithm with K for Scenario1 and Scenario2.

switch (K). A PM cluster can be a rack or pod, and the
number of PMs in a rack and pod varies with K, resulting
in changes of topological distances among VMs. In this part,
we evaluate the performance of our method with different
K in both one-time placements (Scenario1, corresponding to
Fig. 5(a1), (b1) and (c1)) and sequential arriving requests
(Scenario2, corresponding to Fig. 5(a2), (b2) and (c2)).

In Fig. 5(a1) and 5(a2), the communication cost is reduced
as the number of ports increases because the total topological
distance between VMs is reduced when a rack or pod can
contain more VMs. For VMI retrieval cost, however, there
is no explicit causality between VMI retrieval costs and the
number of ports. In fact, the number of VMI blocks to be
transferred is more likely to be influenced by the physical
resources in each PM rather than the total number of PMs.

As shown in Fig. 5(c1), we observe that the execution time
is influenced by the imbalanced partition of VM Partitioning.
For instance, as shown in Fig. 5(c1), when K=12 and the
request has 700 VMs, the number of clusters is 2, and most
VMs are partitioned into the same cluster. Therefore, it has
a longer execution time especially in VM-PM mapping phase
than K = 12, 16, . . . , 32 (rack level cluster). As depicted in
Fig. 5(c2), the execution time increases with K in Scenario2,
primarily due to the sorting and iteration processes of PMs in
the VM-PM Mapping algorithm.

It can be concluded that the number of switch ports
K mainly influences PM clustering and VM-PM Mapping.
Different K will result in different numbers of clusters and
different topological distances between clusters, further influ-
encing communication cost and execution time.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2009

Fig. 6. The performance of our method with THLD for Scenario1 and Scenario2.

E. Varying the Threshold of VM Coarsening THLD

The threshold THLD for VM coarsening is also an important
parameter in our design, which impacts the execution time. We
evaluate the performance for both Scenario1 (Fig. 6(a1), (b1)
and (c1)) and Scenario2 (Fig. 6(a2), (b2) and (c2)) through
varying THLD from 50 to 120.

In Fig. 6(a2), the number of the coarsened VMs has
influence on the distribution of VM communication cost in
Scenario2. The VM communication cost decreases as the
granularity of the coarsened VM becomes finer. In Fig. 6(b1)
and 6(b2), the VMI retrieval cost also slightly decreases
with THLD. However, the execution time grows rapidly as
the threshold increases, as can be seen from Fig. 6(c1) and
6(c2). It is mainly because the SDP solver is sensitive to the
scale of the problem. Therefore, THLD can affect the VM
communication cost and the execution time in VM partitioning
step.

F. Varying the Distribution of Requests

The requests’ traffic matrix and common blocks matrix
are generated using random distributions. In this part, we
mainly consider the two commonly used distributions (Zipf
and uniform distribution [14]) in the existing work to eval-
uate our method. Let uniform-zipf denote that the VMI
files follow the uniform distribution and the traffic fol-
lows the Zipf distribution, and then we have 4 distribution
combinations for the two matrices, as shown in Fig. 7.
For the fairness of comparison, the two distributions of
the same matrix will be normalized with the same mean

value, no matter if it is a traffic matrix or common blocks
matrix.

Fig. 7(a1) and 7(a2) show the VM communication cost of
our method with different distribution combinations. when two
combinations have the same traffic distribution, the commu-
nication cost is almost overlapping. In addition, it can be
inferred that the normalized VM communication cost with
Zipf distribution traffic is smaller than that with uniform
distribution, but the difference is small.

From Fig. 7(b1) and 7(b2), we have two observations:
• The VMI retrieval costs of both zipf-uniform and zipf-

zipf are noticeably less than that of uniform-uniform and
uniform-zipf, indicating that the normalized VMI retrieval
costs with Zipf VMI distribution are less than those with
uniform distribution.

• The VMI retrieval costs of zipf-uniform is less than that
of zipf-zipf, and similarly the retrieval cost of uniform-
uniform is less than that of uniform-zipf. This means when
the requests’ VMI distribution is the same, the traffic
distribution can also influence the VMI retrieval cost:
uniform traffic distribution will incur less VMI retrieval
cost. It is mainly because when performing MST in VM-
PM mapping, the summed weight matrix will finally be
affected by the matrix with Zipf distribution rather than
uniform distribution.

As illustrated in Fig. 7(c1) and 7(c2), the execution time
under different distribution combinations are nearly identical,
but the execution time is slightly shorter under zipf traffic
distribution. It suggests that the SDP solver can find solutions
more quickly when the traffic matrix exhibits a specific pattern
like Zipf distribution.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

2010 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

Fig. 7. Performance of our method with different distribution combinations.

To conclude, the request’s distribution mainly influences the
VM-PM mapping step, resulting in different VMI retrieval
costs.

VI. CONCLUSION AND FUTURE WORKS

In this work, we study the problem of how to reduce the
overall network cost of VMs in a fat-tree structured cloud data
center. To the best of our knowledge, we are the first that
jointly consider both VMI retrieval cost and communication
cost in VM placement. By introducing VM coarsening and
PM clustering, we manage to reduce the scale of the whole
problem, and then it can be solved more effectively and
efficiently. The VM partitioning based on SDP can optimize
the communication cost globally, especially for the longest-
distance communications that may account for the major
part, and the VM-PM mapping based on heuristic optimizes
both VM communication cost and VMI retrieval cost in
a local range. Extensive simulations show that our method
outperforms state-of-the-art works.

In future work, one possible direction is to consider the dif-
ferent network topologies and design new placement solutions.
Another interesting direction is to design meta-heuristic with
multiple targets for VM placement.

REFERENCES

[1] Y. Zhao, H. Chen, S. Zhao, and Y. Wang, “The storage of virtual machine
disk image in cloud computing: A survey,” in Proc. Int. Conf. Netw.
Netw. Appl. (NaNA), 2017, pp. 263–267.

[2] A. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM SIGCOMM Conf. Data Commun., 2009,
pp. 51–62.

[3] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in Proc. IEEE Fifth Int. Conf. Cloud Comput., 2012,
pp. 423–430.

[4] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei, “An
empirical analysis of similarity in virtual machine images,” in Proc.
Middleware Ind. Track Workshop, 2011, pp. 1–6.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[6] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine image
distribution network for cloud data centers,” in Proc. IEEE INFOCOM,
2012, pp. 181–189.

[7] J. Reich et al., “VMTorrent: Scalable P2P virtual machine stream-
ing,” in Proc. Int. Conf. Emerg. Netw. Exp. Technol., vol. 12, 2012,
pp. 289–300.

[8] Z. Zhang et al., “VMThunder: Fast provisioning of large-scale virtual
machine clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp. 3328–3338, Dec. 2014.

[9] X. Xu, H. Jin, S. Wu, and Y. Wang, “Rethink the storage of virtual
machine images in clouds,” Future Gener. Comput. Syst., vol. 50,
pp. 75–86, Sep. 2015.

[10] J. Darrous, S. Ibrahim, A. C. Zhou, and C. Perez, “Nitro: Network-aware
virtual machine image management in geo-distributed clouds,” in Proc.
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), 2018,
pp. 553–562.

[11] M. Björkqvist, L. Y. Chen, M. Vukolić, and X. Zhang, “Minimizing
retrieval latency for content cloud,” in Proc. IEEE INFOCOM, 2011,
pp. 1080–1088.

[12] H. Li, W. Li, Q. Feng, S. Zhang, H. Wang, and J. Wang, “Leveraging
content similarity among VMI files to allocate virtual machines in
cloud,” Future Gener. Comput. Syst., vol. 79, pp. 528–542, Feb. 2018.

[13] H. Li, S. Wang, and C. Ruan, “A fast approach of provisioning virtual
machines by using image content similarity in cloud,” IEEE Access,
vol. 7, pp. 45099–45109, 2019.

[14] Y. Zhang, K. Niu, W. Wu, K. Li, and Y. Zhou, “Speeding up VM startup
by cooperative VM image caching,” IEEE Trans. Cloud Comput., vol. 9,
no. 1, pp. 360–371, Jan.–Mar. 2021.

[15] Y. Yang, B. Mao, H. Jiang, Y. Yang, H. Luo, and S. Wu, “SnapMig:
Accelerating VM live storage migration by leveraging the existing VM
snapshots in the cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 6, pp. 1416–1427, Jun. 2018.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: VM PLACEMENT FOR MINIMIZING IMAGE RETRIEVAL COST AND COMMUNICATION COST 2011

[16] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “VMFlock:
Virtual machine co-migration for the cloud,” in Proc. Int. Symp. High
Perform. Distrib. Comput., 2011, pp. 159–170.

[17] S. K. Addya, A. Satpathy, B. C. Ghosh, S. Chakraborty, and S. K. Ghosh,
“Power and time aware vm migration for multi-tier applications over
geo-distributed clouds,” in Proc. IEEE Int. Conf. Cloud Comput.
(CLOUD), 2019, pp. 339–343.

[18] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[19] Y. Zhao, Y. Huang, K. Chen, M. Yu, S. Wang, and D. Li, “Joint VM
placement and topology optimization for traffic scalability in dynamic
datacenter networks,” Comput. Netw., vol. 80, pp. 109–123, Apr. 2015.

[20] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, “A priority, power
and traffic-aware virtual machine placement of IoT applications in cloud
data centers,” J. Syst. Archit., vol. 115, May 2021, Art. no. 101996.

[21] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A two-
phase virtual machine placement policy for data-intensive applications
in cloud,” J. Netw. Comput. Appl., vol. 180, Apr. 2021, Art. no. 103025.

[22] O. Biran et al., “A stable network-aware VM placement for cloud
systems,” in Proc. IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.
(CCGRID), 2012, pp. 498–506.

[23] Z. Lian, X. Li, and X. Qin, “Topology-aware VM placement for network
optimization in cloud data centers,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process. Appl. Proc. IEEE Int. Conf. Ubiquitous Comput.
Commun. (ISPA/IUCC), 2017, pp. 558–565.

[24] C. Guerrero, I. Lera, B. Bermejo, and C. Juiz, “Multi-objective
optimization for virtual machine allocation and replica placement in
virtualized hadoop,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11,
pp. 2568–2581, Nov. 2018.

[25] S. Farzai, M. H. Shirvani, and M. Rabbani, “Multi-objective
communication-aware optimization for virtual machine placement in
cloud datacenters,” Sustain. Comput., Inform. Syst., vol. 28, Dec. 2020,
Art. no. 100374.

[26] E. Parvizi and M. H. Rezvani, “Utilization-aware energy-efficient virtual
machine placement in cloud networks using NSGA-III meta-heuristic
approach,” Cluster Comput., vol. 23, no. 4, pp. 2945–2967, 2020.

[27] K. Karmakar, R. K. Das, and S. Khatua, “An ACO-based multi-objective
optimization for cooperating VM placement in cloud data center,” J.
Supercomput., vol. 78, no. 3, pp. 3093–3121, 2022.

[28] W. Wei, H. Gu, W. Lu, T. Zhou, and X. Liu, “Energy efficient virtual
machine placement with an improved ant colony optimization over data
center networks,” IEEE Access, vol. 7, pp. 60617–60625, 2019.

[29] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow:
Leveraging VM mobility to reduce network power costs in data cen-
ters,” in Proc. Int. Conf. Res. Netw., 2011, pp. 198–211.

[30] MOSEK Optimizer API for Python 10.0.33. Mosek. Accessed:
Dec. 1, 2023. [Online]. Available: https://docs.mosek.com/latest/
pythonapi/index.html

[31] G. C. Platform. “General-purpose machine family for compute
engine.” Cloud.Google. Accessed: Oct. 24, 2023. [Online]. Available:
https://cloud.google.com/compute/docs/general-purpose-machines

[32] D. Wu, Y. Zeng, J. He, Y. Liang, and Y. Wen, “On P2P mechanisms
for VM image distribution in cloud data centers: Modeling, analysis and
improvement,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.
Proc., 2012, pp. 50–57.

[33] J. Zhang, X. Wang, H. Huang, and S. Chen, “Clustering based virtual
machines placement in distributed cloud computing,” Future Gener.
Comput. Syst., vol. 66, pp. 1–10, Jan. 2017.

[34] M. M. Alves, L. Teylo, Y. Frota, and L. M. Drummond, “An interference-
aware virtual machine placement strategy for high performance
computing applications in clouds,” in Proc. Symp. High Perform.
Comput. Syst. (WSCAD), 2018, pp. 94–100.

Xin Chen received the B.S. degree from the School
of Computer Science and Technology, Harbin
Institute of Technology (Shenzhen), Shenzhen,
China, where he is currently pursuing the master’s
degree. His research interests are in the fields of
cloud computing and algorithm design.

Chonglin Gu received the Ph.D. degree in computer
science and technology from the Harbin Institute of
Technology (Shenzhen), Shenzhen, China, in 2018.
After that, he has been a Postdoctoral Fellow with
the Chinese University of Hong Kong, Shenzhen. He
is currently an Assistant Professor with the School
of Computer Science and Technology, Harbin
Institute of Technology (Shenzhen). His research
interests include cloud computing, especially algo-
rithm design and system implementation.

Xiaoyu Gao received the B.S. degree from the
School of Computer Science and Technology,
Harbin Institute of Technology (Shenzhen),
Shenzhen, China, where he is currently pursuing
the master’s degree. His research interests are in the
fields of cloud computing and green data centers.

Yanyu Shen received the B.S. degree from the
Department of Computer Science and Technology,
Nanchang University. He is currently pursu-
ing the master’s degree with the School of
Computer Science and Technology, Harbin Institute
of Technology (Shenzhen), Shenzhen, China. His
research interests are in the fields of cloud comput-
ing and intelligent optimization.

Zaixing Sun received the M.S. degree in control
engineering from the Kunming University of Science
and Technology, Kunming, China, in 2019. He is
currently pursuing the Ph.D. degree with the Harbin
Institute of Technology (Shenzhen), Shenzhen,
China. His research interests include cloud comput-
ing, intelligent optimization, and scheduling.

Hejiao Huang received the Ph.D. degree in com-
puter science from the City University of Hong
Kong in 2004. She is currently a Professor with
the Harbin Institute of Technology (Shenzhen),
Shenzhen, China, and previously was an Invited
Professor with INRIA, France. Her research interests
include network security, cloud computing security,
trustworthy computing, big data security, formal
methods for system design, and wireless networks.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on April 17,2024 at 05:13:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

