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Abstract—Multi-cloud is a promising paradigm due to its advantages such as avoiding vendor lock-in and optimising costs. This paper
focuses on dynamic flexible workflow scheduling with minimum total monetary cost in multi-clouds, considering multiple categories of
services for each cloud with different configurations and billing methods. Existing studies generally ignore the characteristics and states
of each individual cloud when making schedules, which may be ineffective regarding cost savings and quality of service. To address
this issue, we propose to introduce a cloud selection decision on top of the existing task selection and resource selection decisions
to help us select appropriate resource for task in an overall cost-effective cloud. To automatically learn the task, cloud and resource
selection rules simultaneously, we propose a new genetic programming with multi-tree representation based on a customised discrete
event-driven dynamic workflow scheduling simulator. Simulation results based on two real-world data traces show that the proposed
algorithm performs significantly better than the state-of-the-art algorithms in terms of reducing the rental costs and deadline deviation,
and improving the success rate. The results also show that the superiority of the proposed algorithm lies in the ability to select an
appropriate cloud resource for a task.

Index Terms—Dynamic workflow scheduling, multi-clouds, genetic programming, hyper-heuristic, deadline constraint.
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1 INTRODUCTION

C LOUD computing, a revolutionary paradigm, not only
eliminates hardware investment and maintenance costs

for users, but also reduces computing costs by supporting
a pay-as-you-go pricing (only pay for what you use) that
flexibly provisions resources (e.g., Infrastructure, Software,
Function) for users on demand [1], [2]. Multi-Clouds (MCs)
have become a popular choice for organisations to achieve
greater flexibility, reliability and cost efficiency, which are
difficult to achieve with single-cloud setups. The Flexera
2023 State of the Cloud Report [3] shows that 87% of the
organisations surveyed are using MCs strategies. Cloud
service broker provides tenants with a unified and enhanced
management interface for MCs and plays a strategic role in
helping tenants optimise resource management and deploy-
ment across MCs [4].

Data analysis and processing flow applications sub-
mitted by users for scientific innovation and knowledge
discovery are often structured as Directed Acyclic Graphs
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(DAGs), called workflows, to represent various tasks with
dependent relationships [5], [6]. These workflows are typ-
ically deadline-constrained and require timely execution
using massive and distributed computing resources. In
MCs, the focus is on leveraging the resources provided by
multiple Cloud Service Providers (CSPs) to meet various
workflows needs rather than dedicating the environment
to a single workflow [7]. In addition, organisations typi-
cally have multiple workflows running concurrently, each
with its own unique characteristics, requirements, and non-
periodic arrival (submission) time, i.e. dynamic workflow
scheduling. Dynamic workflow scheduling involves com-
plex decision scenarios, bringing new technical challenge
mainly in the design of algorithms: Algorithms need to be
highly adaptive, able to respond in real-time or near real-
time to changes in workflow requirements, cloud resource
availability and cost structures. This requires the ability
to quickly re-evaluate and modify scheduling decisions
without significant overhead. The key to this challenge is
to design advanced scheduling mechanisms that are cost
effective while maintaining high standards of performance
and reliability in an inherently variable environment.

In fact, a CSP can provide a variety of products or
services on demand, which ultimately meet personalised
requirements by optimising task scheduling and task-to-
resource mapping [8], [9]. These service categories can be
Infrastructure-as-a-Service (IaaS, e.g., AWS EC2), Platform-
as-a-Service (PaaS, e.g., Google App Engine), Software-as-
a-Service (SaaS, e.g., Office365), and Function-as-a-Service
(FaaS, e.g., AWS Lambda), etc. Enterprises using a MCs with
multiple categories of services can increase their flexibility
and choice in selecting the suitable platform for specific
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tasks; reduce dependence on a single provider; enhance
flexibility through redundancy and failover options; and
promote innovation and acquire the latest technology to
improve core competitiveness [10], [11]. Based on IaaS and
PaaS, Sharma et al. [12] created a mixed-integer non-linear
programming model for variable cloud components for
small application developer firms. The model rationalises
the allocation of the applications on IaaS and PaaS clouds by
considering factors such as computing power hours, storage
requirements, and total cost. Most existing studies focus on
a single service category such as Virtual Machines (VMs)
[13], [14] and functions [11], [15], [16]. In addition, for het-
erogeneous tasks, there are privacy-sensitive [13], [14], [17],
computation-intensive or memory-intensive [18], [19] in the
existing studies. Since CSPs can offer multiple categories of
services, we name the dynamic workflow scheduling in the
MCs as the dynamic flexible workflow scheduling problem. The
workflow’s flexibility lies in its tasks being associated with
specific service categories.

In this paper, we focus on the dynamic flexible work-
flows scheduling under deadline constraints in multi-clouds
with multiple service categories (DFWS-MCs). The objective
is to minimise the total monetary cost, which includes the
execution cost of tasks and the communication cost when
communicating between different CSPs. It is worth mention-
ing that Cisco has designed Software-Defined Wide Area
Network to address the network bandwidth challenge, and
thus, the network bandwidth is not necessarily to be a bot-
tleneck in multi-clouds anymore. Previous works [20], [21]
have studied the dynamic workflow scheduling in multi-
clouds, but only consider VM services. Therefore, in terms
of the problem model, we differ from existing researches in
that we consider multi-cloud environments with multiple
service categories. DFWS-MCs inherits many challenges of
workflow scheduling in traditional cloud environments,
e.g., deadline constraints; determining the scheduling se-
quence of tasks; billing for cross-cloud data transmission;
capacity and cost trade-offs in resource selection [15], [22],
[23]. Moreover, the solution space becomes larger in MCs,
making these challenges more difficult to overcome. Since
we consider multiple service categories, this leads to the
following extra challenges in DFWS-MCs.

First, different service categories have different config-
uration parameters, and their billing methods may be sig-
nificantly different. For example, the VM service’ billing
method is only the execution time multiplied by the unit
price, AWS lambda functions’ include a per GB second
charge and a per invocation charge, and Google functions
are billed differently than AWS lambda functions [24], [25].
Moreover, due to different configurations, we should make
decisions according to different service categories when
solving this problem. We also need to consider other factors,
such as the longer cold booting time of VM services than
that of function services and the maximal time per execution
of the function instances.

Second, traditional workflow scheduling in cloud usu-
ally involves two decisions [6], [11], [21], [26]: the task
prioritisation and the resource selection. Existing studies on
MCs always select resources from all available resources,
and then the cloud owning the selected resource is auto-
matically determined. Although this way is relatively naive,

it is difficult to select the most appropriate resource for
the workflows because the number of available heteroge-
neous resources is usually very large and it will be varying
constantly during the scheduling process. Moreover, this
method also ignores the characteristics and states of each
individual cloud when making dynamic schedules, which
may be ineffective in selecting an appropriate resource to
execute workflows with minimum cost under deadline con-
straints. For example, selecting low-configuration resources
with low cost to execute tasks may miss the deadline, while
selecting high-configuration takes less execution time but
with high expenditure. Therefore, we propose to compre-
hensively evaluate the priority of different clouds based
on the system state of each cloud and the known task
allocation. We will subsequently select resources within the
belonged cloud with the top priority. This is expected not
only to choose an overall cost-effective cloud for tasks, so
as to select resources that are suitable in terms of time and
cost, but also reduce the selection space of the resources.

At present, many studies [7], [21], [27] employ heuristic
algorithms to solve dynamic (real-time or online) workflow
scheduling. These algorithms are usually based on extract-
ing state features during the scheduling process to manually
design rules, which highly relies on domain knowledge.
In addition, human experts are often unable to identify all
the subtle and interrelated conditions between the different
types of features to create and evaluate rules [28], [29]. The
decisions made by manually designed scheduling heuristics
are mostly greedy decisions, which might not be good for
long-term scheduling [30]. Hyper-heuristic [31] is an auto-
mated methodology for selecting or generating heuristics
to solve hard computational problems, thereby improving
the ability to adapt and capture important factors. The goal
of this approach is to explore the “heuristic search space”
of the problems instead of the solution search space in
the cases of heuristics and meta-heuristics. Different from
genetic algorithms, Genetic Programming Hyper-Heuristic
(GPHH) [32], [33] is to automatically evolve scheduling
heuristic rules or algorithms rather than finding the solution
directly. In other words, the output of GP or GPHH is a
set of rules or heuristics/policies instead of a schedule or a
solution, which is typically the case for GA or other heuristic
methods. Being a hyper-heuristic approach, GPHH consists
of an offline training phase and an online test phase. During
the offline training phase, GPHH is designed to evolve a
scheduling heuristic, driven by the goal to minimise the
total monetary cost when executing a group of workflows.
The best heuristic discovered by GPHH during training can
make decisions in dynamic/real-time workflow schedul-
ing. GPHH has been successful for automatically evolving
scheduling heuristics for many combinatorial optimisation
problems, such as job shop scheduling [34], [35] and routing
problems [36], [37]. However, the existing GPHH methods
for cloud workflow scheduling studies [6], [30], [38], [39]
support up to two rules that cannot be directly used for our
three decision-making problems. To address this challenge,
this paper proposes a Multi-Tree Genetic Programming
(MTGP) to evolve scheduling heuristics for DFWS-MCs. The
main contributions of this paper are shown as follows:

• We provide a constrained optimisation model for the
dynamic flexible workflow scheduling under deadline
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constraints in multi-clouds with multiple service cate-
gories, which covers the important aspect of multiple
service categories not yet considered in the literature.

• We customise a new dynamic workflow scheduling
simulator to mimic the scheduling process in real-world
scenarios as the existing simulator does not support
multiple service categories. The scheduling heuristic is
used to make a decision at each decision point to obtain
the final schedules.

• We propose a MTGP method with a new representa-
tion, which is comprised of three rules, i.e., the task
selection rule to select a ready task, the cloud selection
rule to select a cloud to execute the ready task, and the
resource selection rule to select a resource in the selected
cloud to execute the ready task. We design a number
of terminals based on the scheduling process, which
can clearly describe the state of the multi-cloud system.
The designed terminals are divided into three different
groups to construct the above three rules.

• We conduct extensive simulation experiments based on
two real-world data traces (the workflows extracted
from Cluster-trace-v2018 of the Alibaba Cloud and sci-
entific workflows from Pegasus project). Experimental
results show that the proposed algorithm outperforms
existing state-of-the-art methods. The results also show
that the proposed algorithm learns and uses more valu-
able terminals to select cloud and resource to execute
task from a holistic perspective.

2 RELATED WORK

2.1 Workflow Scheduling in Different Clouds

Early research in the heterogeneous distributed computing
environment, as an embryonic form of cloud computing,
focuses mainly on the effective management and utilisa-
tion of computing resources. The widely recognised and
popular HEFT algorithm [40] was originated in such an
environment. In the heterogeneous environment, the esti-
mated execution time of tasks on processors often remained
independent of processor performance [40], [41], whereas
in a cloud environment it is positively correlated with
processor performance. Accordingly, task scheduling in the
heterogeneous environment can be analogised to classical
flexible job shop scheduling, where the candidate machines
for each task are all processors.

Besides minimising makespan under deadline con-
straints, the Workflow Scheduling Problem (WSP) has dif-
ferent additional concerns in different cloud environments.
In traditional or private clouds, WSP usually focuses on
load balancing and energy consumption. Based on queue
balancing and data reuse-replication techniques, Casas et
al. [42] developed a load balancing scheduler for scientific
workflows scheduling in cloud to simultaneously minimise
execution time and monetary cost. Xia et al. [43] combined
genetic algorithm with longest common subsquence to op-
timise the makespan and energy consumption for workflow
scheduling in cloud. In public cloud or multi-cloud, WSP
usually focuses on issues related to minimising the user’s
leasing costs used to execute the tasks or maximising the
provider’s interests. Sun et al. [22] proposed an enhanced
task type first algorithm to minimise the total cost and

total idle rate for deadline-constrained workflow schedul-
ing in public cloud. They considered some new features
of cloud environments such as hibernation and per sec-
ond billing. Taghinezhad-Niar and Taheri [21] proposed a
Reliability, rental cost, and Energy-aware Multi-workflow
Scheduling in the Multi-cloud (REMSM) heuristic algorithm
and a DVFS-enabled version of it for multi-cloud systems,
with the aim of minimising monetary cost and energy
consumption while maximising application execution reli-
ability. Cong et al. [44] developed a personalised service
request model and a user satisfaction prediction model for
a cloud service platform. Then, based on these models,
they proposed a scheduling scheme based on lightweight
value assessment and cross-entropy to maximise the cloud
service provider’s profit. However, these studies are limited
to manually designed heuristics, which require empirical
knowledge and ingenious design to achieve good results.

In hybrid clouds (private cloud+public clouds), WSP pri-
marily ensures the privacy or security of tasks and then tack-
les environment-specific issues. Sun et al. [14] proposed a
nested algorithm based on multi-objective salp swarm algo-
rithm and iterative greedy algorithm for hybrid-cloud-based
privacy-aware multi-workflow scheduling. They considered
the trade-offs between the three minimisation objectives
workflow-oriented total tardiness, private-cloud-oriented
total energy consumption, and public-cloud-oriented total
monetary cost. In fog computing or edge computing envi-
ronment, WSP involves efficiently allocating tasks to avail-
able resources within fog or edge nodes and ensuring short
response time and high reliability [45]. Aburukba et al. [46]
developed an integer linear programming model for the IoT
requests scheduling problem in hybrid fog-cloud comput-
ing. These requests were generated by the edge devices and
need to be allocated to the available resources in the cloud
and fog with lower latency, where the latency can be due to
transmission delay, routing or queuing delay, and waiting
time if the resources are busy, and other components. In
recent years, the emergence of cloud native technologies,
such as microservices and containers, as well as serverless
or FaaS platforms, has introduced new considerations for
WSP, which impact the design, deployment, and scheduling
of workflows. Ranjan et al. [47] developed a container-based
virtualised model for energy-efficient workflow scheduling
in software-defined data centers. Since containers can be
faster to manage and deploy than VMs, which can save
time and energy consumption with application deploy-
ment, they focused on migrating containers within VMs
among different data centers. Based on FaaS platforms,
users mainly focus on the lifecycle of the function without
considering the infrastructure, but still need to declare the
appropriate function configuration to meet the deadline and
budget requirements of the function [48]. Although current
cloud environments and their collaboration environments
are complex, diverse and have different functions, existing
research is limited to supporting a single category of task
execution, but cannot handle multiple categories.

To address the above issues, this paper studies a new
dynamic workflow scheduling in MCs, which supports mul-
tiple categories of task execution. To this end, we propose
a learning and hyper-heuristic algorithm (i.e., GPHH) to
automatically design and evolve heuristics for the problem.
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2.2 GPHH for Cloud Workflow Scheduling
Heuristic algorithms (designed based on expert experience)
have been extensively developed and employed to solve
workflow scheduling problems [49]. GPHH searches for
a heuristic that can then be applied to construct corre-
sponding schedules to different problem instances, rather
than searching directly for solutions to a particular problem
instance [50]. Many studies have shown that production
scheduling heuristics learned by GPHH can outperform
manually designed heuristics in the literature [32], [50], es-
pecially in dynamic and stochastic environments. However,
the studies of GPHH in the field of cloud computing are
limited. Escott et al. [38] used GPHH to minimise the overall
makespan for dynamic workflow scheduling. Yang et al. [39]
employed GPHH to minimise the VM rental fees and SLA
penalties for the dynamic WSP. They extracted some new
factors as terminals to help GPHH get better performance.
In [38], [39], each individual of GPHH has one tree which
is used to select a processor for each task. Xiao et al. [6]
proposed a cooperative coevolution GPHH to minimise
the makespan for static WSP, which co-evolves the task
selection rule and the resource selection rule simultaneously.
Xu et al. [30] established a new model for dynamic WSP
in fog computing which considered the limited comput-
ing resources (e.g., mobile devices, edge nodes and cloud
servers) in the real world. They developed a discrete event-
driven simulator and proposed a GPHH to minimise the
overall makespan, which also evolves the task and resource
selection rules simultaneously. However, the terminals used
by the existing studies to construct rules are naive and
limited, which cannot fully reflect the state of the cloud
system. Moreover, their GPHH methods contain only two
rules, thus cannot be directly used for our three decision-
making problems.

The HSA9Fs algorithm proposed by Sun et al. [14] based
on the extracted 9 features outperforms existing state-of-the-
art algorithms in some cases, showing that extracting more
factors can help find more effective rules. Therefore, we
consider designing more features that can reflect the system
state to construct three different rules.

3 CLOUD WORKFLOW SCHEDULING MODEL

3.1 Multi-clouds Architecture
This section introduces the dynamic workflow schedul-
ing architecture in multi-clouds with multiple service cat-
egories, as shown in Fig. 1. The architecture consists of the
following three modules:

• Multi-cloud environment. In multi-cloud environ-
ment, there are multiple CSPs, each of which provides
different categories and prices of service instances. Dif-
ferent types of service instances may have different
application scenarios, e.g., θ1 is a VM instance type, θ2
is an analysis service, θ3 is a container service, and θ5
can be directly used for machine learning.

• Users dynamically submit workflows. The information
of a workflow is unknown until it is submitted, and
multiple workflows can be submitted simultaneously.
CSPs can provide an unlimited number of different ser-
vice instances to the end users [7], [22] . Therefore, each
workflow can be served immediately when submitted.
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Fig. 1. The dynamic workflow scheduling architecture in multi-clouds
with multiple service categories.

Table 1
Symbols and Meanings.

Symbol Definition

P The set of CSPs.
Θ The set of all the service categories provided by the CSPs.

S(p) The set of service instance types provided by the CSP p ∈ P .
θ(s) The category associated with instance type s, θ(s) ∈ Θ.

v(s),m(s), q(s) The number of vCPUs, memory size, and computational
capacity associated with instance type s.

c(s), b(s) The unit price and billing interval associated with instance
type s.

W (p1, p2) The bandwidth between the CSPs p1 and p2 for data trans-
fer, where W (p, p) = W (p) is the interval bandwidth of the
CSP p ∈ P .

G A set of workflow applications.
T (g) A set of tasks in workflow g ∈ G.
s(t) The computation size associated with task t ∈ T (g).
n(t) The number of invocations associated with task t.

T pred(t) A set of immediate predecessors of task t, T pred(t) ⊆ T (g).
T succ(t) A set of immediate successors of task t, T succ(t) ⊆ T (g).
d(t1, t2) The data required to be transferred from each task t1 to its

successor task t2 ∈ T succ(t).
ϕ(t) The service category required to execute a task t.
a(g) The arrival time of the workflow g.
ρ(g) The deadline of the workflow g.
x(t) The execution start time of the task t in the schedule.
y(t) The assigned instance of the task t in the schedule.
z(t, p) A boolean variable indicating whether y(t) belongs to the

CSP p or not.
τe(t) The execution time of task t on y(t).

τc(t1, t2) The communication time between each task t1 and its
successor task t2.

Iy(t1 )̸=y(t2) A boolean variable, which is equal to 1 if y(t1) ̸= y(t2), and
0 otherwise.

πe(t, τe(t), ϕ(t)) The execution cost of the task t.
πc(t1, t2) The communication cost between a task t1 and its successor

task t2 ∈ T succ(t1).

• Cloud broker. The two main functions of the cloud
broker are [11]: a) optimising the configuration of vir-
tual resources across a group of CSPs, and b) monitor-
ing and managing these virtual resources. The cloud
broker’s scheduler component aims to generate a near-
optimal deployment plan based on user’s demands on
resources and cloud service offerings provided by CSPs.

3.2 Problem Formulation

Let P = {AWS,GoogleCloud,Azure, · · · } be the set of
CSPs, and Θ = {VM,AWSLambda,GoogleFunction, · · · }
be the set of all the service categories provided by the
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CSPs. S(p) is the set of service instance types provided
by the CSP p ∈ P . Each instance type s is associated
with a category θ(s) ∈ Θ, the number of vCPUs v(s),
required memory m(s), computational capacity q(s), unit
price c(s), and billing interval b(s). Let W (p1, p2) be the
bandwidth between the CSPs p1 and p2 for data transfer,
where W (p, p) = W (p) is the interval bandwidth of the
CSP p ∈ P .

Customers dynamically submit their applications to the
multi-cloud platform. Before being submitted, the features
of customers’ applications (e.g. arrival time, deadlines, and
structures, etc.) are unknown to the platform. Let G be a set
of dynamic workflow applications. Each workflow g ∈ G
contains a set of tasks T (g). Each task t ∈ T (g) is associated
with a computation size s(t), number of invocations n(t),
a set of predecessor tasks T pred(t) ⊆ T (g), and a set
of successor tasks T succ(t) ⊆ T (g), representing the data
dependencies between tasks. The data required to be trans-
ferred from each task t1 to its successor task t2 ∈ T succ(t) is
denoted as d(t1, t2). Each task t requires the service category
ϕ(t) to execute it, which ϕ(t) ∈ Θ. The arrival time of the
workflow g is a(g), and its deadline is ρ(g).

The pricing scheme used by each service category may
vary. For example, VM-based service categories may be
billed based on lease time, while function-based service cat-
egories may be billed based on the number of invocations. In
addition, major CSPs now support per-second billing, which
brings customers closer to being billed only for the time
they actually occupy resources. For the sake of simplicity,
we denote the execution cost of a task t as πe(t, τe(t), ϕ(t)),
where τe(t) is the execution time of t. For communication,
the price of transferring a unit of data between CSPs p1 and
p2 is πc(p1, p2), where πc(p1, p2) = 0 if p1 = p2.

The problem aims to assign resource instances from CSPs
to execute the tasks of the workflows subject to the following
constraints:

• No task can be executed until all its predecessor tasks
have been completed.

• Each task must be executed by an instance with the
category it requires.

Let x(t) and y(t) be the execution start time and assigned
instance of the task t in the schedule, and z(t, p) be an
auxiliary variable indicating whether y(t) belongs to the
CSP p or not, i.e.,

z(t, p) =

{
1, if y(t) belongs to p,

0, otherwise.
(1)

The execution time of task t on y(t) is calculated as

τe(t) =
s(t)

q(y(t))
. (2)

The communication time between each task t1 and its suc-
cessor task t2 is

τ c(t1, t2) =
∑
p1∈P

∑
p2∈P

z(t1, p1)z(t2, p2)
d(t1, t2)

W (p1, p2)
Iy(t1 )̸=y(t2),

(3)
where Iy(t1) ̸=y(t2) = 1 if y(t1) ̸= y(t2), and 0 otherwise.
When y(t1) ̸= y(t2), it means that two tasks are not allo-
cated the same resource, and they require data transmission.

The total monetary cost includes the execution cost of
tasks and the communication cost when communicating
between different CSPs. The execution cost is given by
πe(t, τe(t), ϕ(t)). Since there are different billing methods
for different categories of resources or different providers,
we list the following three methods based on the above
configuration1.

• If the service category for executing task t is VM, i.e.
ϕ(t) = VM , the execution cost is the execution time
multiplied by the unit price, as shown in Eq. (4).

πe(t, τe(t), ϕ(t))=

⌈
τe(t)

b
(
y(t)

)⌉× c
(
y(t)

)
3600

. (4)

• If the service category for executing task t is a lambda
function provided by AWS, i.e. ϕ(t) = AWSLambda,
the execution cost includes a per GB second charge
(defined as CPU time multiplied by the amount of
memory used.) and a per invocation charge ($0.2 per
million requests), as shown in Eq. (5).

πe(t, τe(t), ϕ(t))=

⌈
τe(t)

b
(
y(t)

)⌉×c
(
y(t)

)
×n(t)×

m
(
y(t)

)
1024

+

⌈
n(t)

106

⌉
×0.2. (5)

• If the service category for executing task t is a function
provided by Google, i.e. ϕ(t) = GoogleFunction, the
execution cost includes a per GB-second charge, a per
GHz-second ($0.01 per thousand GHz-seconds) and a
per invocation charge ($0.4 per million requests), as
shown in Eq. (6).

πe(t, τe(t), ϕ(t))=

⌈
τe(t)

b
(
y(t)

)⌉×n(t)×
(m(

y(t)
)

1024
×c

(
y(t)

)
+

y(t)GHz

106
× 0.01

)
+

⌈
n(t)

106

⌉
×0.4, (6)

where y(t)GHz is the GHz configuration of the instance
y(t) that executes task t.

The communication cost between a task t1 and its suc-
cessor task t2 ∈ T succ(t1) is

πc(t1, t2) =
∑
p1∈P

∑
p2∈P

z(t1, p1)z(t2, p2)d(t1, t2)π
c(p1, p2).

(7)
The problem can then be formulated as

min
∑
g∈G

∑
t∈T (g)

(
πe(t, τe(t), ϕ(t))+

∑
t′∈T succ(t)

πc(t, t′)
)
,

(8)
s.t. : x(t) ≥ a(g), ∀ g ∈ G, t ∈ T (g), (9)

x(t) + τe(t) ≤ ρ(g), ∀ g ∈ G, t ∈ T (g), (10)
x(t1) + τe(t1) + τ c(t1, t2) ≤ x(t2),∀ g ∈ G,

t1 ∈ T (g), t2 ∈ T succ(t1), (11)
ϕ(t) = θ(y(t)), ∀ g ∈ G, t ∈ T (g), (12)∑
t∈T (g)

∑
p∈P

z(t, p) = 1, ∀ g ∈ G. (13)

1. We don’t consider the free tier of function categories. Moreover, for
tasks with multiple invocations of function categories, the algorithm
only needs to make a decision once and then execute the task on the
same type of function instance.
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Fig. 2. The flowchart of the MTGP approach. The input to the flowchart is training data. The output are the learned three rules represented by the
best individuals.

Eq. (8) is the objective, which is the total monetary cost to
be minimised. Constraints (9)-(13) are the constraints to be
satisfied by the deployment of tasks after workflow submis-
sion. Constraint (9) ensures that each task is executed after
submission. At any time, the information about all tasks that
have not yet been submitted at that time is not known to the
model. Constraint (10) ensures that the workflow is finished
before its deadline, which is considered as a soft constraint
in this paper and we will evaluate the quality of the solution
by the success rate metric. Constraint (11) is the precedence
constraint in a workflow, which indicates that the task
cannot be executed until all of its immediate predecessors
have finished and it has received all of the output data from
its immediate predecessors. Constraint (12) implies that the
service category required by the task matches the service
category that executes it. Constraint (13) means that each
task in each workflow is scheduled only once.

4 THE PROPOSED DYNAMIC WORKFLOW
SCHEDULING ALGORITHM

This section presents the proposed MTGP approach for the
DFWS-MCs. We first give an overview of MTGP, then intro-
duce the representation of the allocation rules, the terminal
set, and the fitness function.

4.1 Overview
MTGP aims to evolve scheduling heuristics to help the
Workflow Scheduler to schedule cloud resources for workflow
execution. We rely on the dynamic workflow scheduling
simulator to simulate the processing of dynamically arriving
workflows over an extensive period of time. The details of
this simulator are given in Section 4.3 below.

We propose the MTGP approach to automatically gener-
ate the following 3 rules to make decisions:

• Task selection rule (Rule 1): to select the next ready task
to be executed. If there are multiple tasks ready at the
same time, the rule is used to determine the sequence
of tasks.

• Cloud selection rule (Rule 2): to select a cloud to
execute the selected task.

• Instance selection rule (Rule 3): to select a resource in
the selected cloud to execute the selected task. First,
it filters out the instances that cannot meet the sub-
deadline to execute the task. If no instance remains,

then the instance in the cloud with the earliest finish
time is selected to execute the task. Otherwise, the
instance selection rule is used to select the instance. If
there are multiple instances with the same priority, it
is preferred to select an existing instance that does not
need to be created.

Fig. 2 shows the flowchart of using MTGP to learn
heuristics for DFWS-MCs [30], [51]. Each GPHH individ-
ual consists of three trees (corresponding to the above
three rules). The fitness of an individual depends on the
co-operation of the three rules. The details of individual
representation are given in Section 4.2. The evolutionary
mechanisms of MTGP are presented separately as follows.

• Population initialisation. In the beginning, a num-
ber of individuals are initialised by random selecting
and combining the terminals and functions with the
ramped-half-and-half method [50]. That is, half of the
individuals are initialised with the maximum depth set
in advance, while the other half of the individuals are
initialised randomly within the maximum depth.

• Individual evaluation. Given a training instance, we
can evaluate the fitness of an individual (i.e., a combi-
nation of the three rules) by applying it to the Workflow
Scheduler or dynamic workflow scheduling simulator.
After fitness evaluation, each individual has a fitness
that represents its quality.

• Parent selection. If the stopping criterion is met, the
best individual so far is considered as the best evolved
scheduling heuristic for DFWS-MCs. Otherwise, we use
the tournament selection to select parents for generat-
ing offspring.

• Evolution. Evolution has three genetic operators, which
are reproduction, crossover and mutation. These oper-
ators aim at generating a new population by inheriting
good materials from the parent population. For repro-
duction, we copy a certain number of elites into the next
generation directly, where elites are the top individuals
picked up from the current population. For crossover,
we randomly select a tree with the same decision from
two adjacent parents, then randomly select a sub-tree
from each parent and swap these two sub-trees, and
then randomly select and swap another whole tree with
the same decision to produce two new individuals. For
mutation, we first randomly select a tree and generate a
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Fig. 4. An example of a tree-based individual representation. The rules
can be regarded as priority functions to prioritise tasks/clouds/instances.
In this paper, a lower priority value gives the task/cloud/instance a higher
precedence. R1 = max {NKQ,TETQ} − UR

ET
.

R2 = max {min {CC,NKWC} ,VEC+ CC}.
R3 = ST +min {EC, IAT}.

subtree with the same decision as it. Then we randomly
select a subtree from the parent and replace it with the
newly generated subtree. The processes of crossover
and mutation are shown in Figs. 3(a) and 3(b).

4.2 Representation, Terminal Set, and Function Set

To evolve a scheduling heuristic with three rules for the
DFWS-MCs problem, an individual is designed with three
trees which represent task selection rule, cloud selection rule
and instance selection rule, respectively. The structure of
the individual can be seen in Fig. 2, and we also give an
example of a tree-based individual in Fig 4. We design 22
terminals based on the scheduling process, which indicate
the characteristics related to workflows, tasks, instances and
clouds, to describe the state of the multi-cloud system. These
terminals, i.e. the low-level heuristics, are designed based
on the global real-time information of the workflows and
the multi-cloud system, so that the learned heuristics can
solve the dynamic workflow scheduling.

Table 2 shows the terminal and function sets of MTGP.
The terminals are the leaves of the tree while the functions
cannot be located at the leaves of the trees. Note that the
terminal set is different for each rule, but the function set is
the same. We use the symbol ”✓” to mark the terminators
that compose the corresponding rule in Table 2. Nos. 1-6
are task-related terminals, Nos. 7-10 are workflow-related
terminals, Nos. 11-16 are instance-related terminals and
Nos. 17-22 are cloud-related terminals. The function set
is {+, -, *, protected /, Max, Min}, and each function has
two arguments. The protected division “/” returns one if
divided by zero. Below we provide additional explanations
for those terminals in the table that are not self-explained.

No.4 SD is the sub-deadline of a task, which is set based
on the latest finish time, as shown in Eq. (15). Considering
that different clouds may have uneven performance, we use
the terminal ET (denote as ET (t) for a task t) and the max-

Table 2
Terminal and Function sets of MTGP.

No. Notation Description 3-Decision MTGP

Rule1 Rule2 Rule3

1 ET The average execution time of a task in the
multi-cloud system.

✓

2 NPK The number of direct predecessors for a task. ✓
3 NSK The number of direct successors for a task. ✓
4 SD The sub-deadline of a task. ✓
5 UR The upward rank of a task. ✓
6 VCT The average communication time for a task. ✓
7 NKQ The number of tasks in ready queue. ✓
8 NRK The number of remaining (or unscheduled)

tasks in a workflow.
✓

9 TETQ The total computation size of tasks in ready
queue.

✓

10 TETRK The total computation size of remaining tasks
in a workflow.

✓

11 AAT The actual available time of a instance. ✓
12 AET The actual execution time of task on an in-

stance.
✓

13 EC The execution cost of task on an instance. ✓
14 IAT The available time of an instance for a task. ✓
15 ST The slack time of task, which is (AAT−SD). ✓
16 CC The communication cost of a task while it is

executed on an instance.
✓ ✓

17 NKWC The number of the scheduled tasks belonging
to the same workflow in a cloud.

✓

18 VAAT The average AAT in a cloud. ✓
19 VEC The average EC in a cloud. ✓
20 VET The average ET in a cloud. ✓
21 VIAT The average IAT in a cloud. ✓
22 VST The average ST in a cloud. ✓

Function set +, -, *, protected /, Max, Min ✓ ✓ ✓

imum intra-cloud transmission time τ̄ c(t1, t2) =
d(t1,t2)

min
p∈P

{W (p)}

to estimate the latest finish time ℓ(t) (Eq. (14)), rather than
the minimum execution time [7], [21] or maximum execu-
tion time [14], [16] of tasks. ε is a random factor within the
range [0.95, 1]. The smaller the ε, the more urgent the tasks
in a workflow and the smaller the sub-deadline. Following
[14], we set ε = 0.95.

ℓ(t1) =

 ρ(g), if T succ(t1) = ∅,

max
t2∈Tsucc(t1)

{ℓ(t2)− ET (t2)− τ̄ c(t1, t2)} , otherwise.

(14)

SD(t) =

{
ℓ(t), if T succ(t) = ∅,

ε× ℓ(t), otherwise.
(15)

No.5 UR is the upward rank of a task t, which is the length
of the critical path from t to the exit task [40], as shown in
Eq. (16).

UR(t1)=

 ET (t1), if T succ(t1) = ∅,

ET (t1)+ max
t2∈Tsucc(t1)

{UR(t2)+ τ̄c(t1, t2)} , otherwise.

(16)
No.11 AAT is the actual available time of an instance for
a task and is equal to the maximum of the current system
time, IAT and data transfer finish time from the predecessor
tasks. No.13 EC is the execution cost of a task on an instance.
If the instance is newly created, then the EC will include
the cost incurred for booting the instance. No.14 IAT is the
available time of an instance, which is the finish time of the
last task assigned to the instance. If the instance is newly
created, IAT is set to the system time plus the booting time
of the instance. No.16 CC is the communication cost of a
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Fig. 5. The flowchart of dynamic event triggering when scheduling a workflow.

task while it is executed on one instance, which is the total
the cost for receiving data from the predecessor tasks.

4.3 Discrete Event-driven Simulation Process
For fitness evaluation, we develop a new discrete event-
driven simulation process with the three rules, which main-
tains an event queue E sorted with trigger time. Each event
Ee is associated with the event name EN

e , trigger time
ET
e , workflow involved EW

e , task involved EA
e , category

involved Eϕ
e , provider involved EP

e , and service instance
involved ES

e . Fig. 5 shows the flowchart of dynamic event
triggering when scheduling a workflow. According to the
event name, we introduce (1) when each event is triggered
and (2) what will happen when the event is triggered:

• WorkflowSubmitted. When: the arrival time of a work-
flow. What: set the tasks with no immediate prede-
cessors to ready state. If there are multiple workflow
submissions or multiple tasks that need to be set to
ready state, the task selection rule is adopted to calculate
the priority of each task, and the tasks are added to
the TaskReady event queue in ascending order of this
priority.

• TaskReady. When: after a workflow has been submitted
or all of a task’s immediate predecessors have been
assigned and started to execute. What: select an instance
to execute the task. We first use cloud selection rule to
calculate the priority of each cloud. Then, in the cloud
with the highest priority, one instance is selected to
execute the task according to the instance selection rule
introduced above. Once the instance that will execute
the task has been determined, we can determine the
start execution time of the task from the terminals
associated with that instance.

• StartBootingInstance. When: before the instance exe-
cutes its first task. What: take time to launch the instance
and deploy the execution environments of workflows.

• CompleteBootingInstance. When: after the instance
has finished booting. What: the instance enters an active
state and can execute tasks. The different categories of
services have different booting times.

• StartDataTransfer. When: after the predecessors of the
task to be executed have finished execution. What: start
to receive the output data from predecessors.

• CompleteDataTransfer. When: after receiving the out-
put data of the predecessors. What: trigger the
StartExecuteTask event if the output data of all pre-
decessors are received.

• StartExecuteTask. When: after the ready task has re-
ceived data from all predecessors and the assigned
instance is active. What: start to execute the task, and
set its successor to the ready state if all predecessors
of this successor have started to execute. Generally, a
task enters the ready state after its predecessor tasks are
completed [2], [27], as shown by the dashed arrow ➊ in
Fig. 5. However, in this case, if the instance executing
the task needs to be created and initialised, it cannot
receive data or start the task until the initialisation is
complete. This can cause instances executing predeces-
sor tasks to be idle unnecessarily. If we set a task to
the ready state after starting to execute its predecessor
tasks (the task’s start time is after the completion of its
predecessor tasks), as shown by the solid arrow ➋, we
can initialise the instance earlier to reduce idle time.

• CompleteExecuteTask. When: after the execution of task
is finished. What: trigger the CompleteExecuteWorkflow
event if this task is the last finished task in a workflow.

• CompleteExecuteWorkflow. When: after all the tasks in
a workflow have been finished. What: Record that the
workflow has been scheduled.

The state of the simulated system, such as the system
time, is updated as each event is triggered, and an event can
generate and/or trigger other events. Overall, the simula-
tion process is scheduled sequentially according to the event
queue. The scheduling heuristic makes a decision on each
decision point to make the scheduling process continue.
The detailed pseudo-codes of the MTGP and discrete event-
driven simulation process are presented in Section A of the
supplementary file.

4.4 Complexity Analysis
Suppose that g is the number of evolutionary generations, p
is the population size, n is the number of tasks in a decision
point, c is the number of clouds, ands is the number of active
service instances in a decision point. R1, R2, and R3 are the
number of nodes of the corresponding rule. The number
of decisions at each of these three decision points does not
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Table 3
Virtual Machine Category’s Types and Configurations

Type vCPU ECU Total MIPSa Memory (GB) Cost($/hour)

A
W

S

c3.large 2 7 7000 3.75 0.128
c3.xlarge 4 14 14000 7.5 0.255
c3.2xlarge 8 28 28000 15 0.511
c3.4xlarge 16 55 55000 30 1.021
c3.8xlarge 32 108 108000 60 2.043

A
zu

re

D2 v3 2 5 5000 8 0.096
D4 v3 4 10 10000 16 0.192
D8 v3 8 20 20000 32 0.384
D16 v3 16 40 40000 64 0.768
D32 v3 32 80 80000 128 1.536

G
oo

gl
e

n1-standard-2 2 5.5 5500 7.5 0.095
n1-standard-4 4 11 11000 15 0.19
n1-standard-8 8 22 22000 30 0.38
n1-standard-16 16 44 44000 60 0.76
n1-standard-32 32 88 88000 120 1.52

a One ECU provides CPU capacity equivalent to a 1.0–1.2 GHz 2007
Opteron or 2007 Xeon processor, approximately 1000 MIPS.

exceed the total number of the tasks of all the submitted
workflows in off-line training phase, denoted as N .

The complexity during the GP training phase is
demonstrated by the fitness evaluation. The complexity
in decision points is O (n·R1) +O (c·R2) +O (s·R3) =
O (n·R1+c·R2+s·R3). The complexity of fitness
evaluation is O (N ·n·R1+N ·c·R2+N ·s·R3).
Therefore, for the offline training phase, the
overall complexity of MTGP is O

(
g · p ·

(O (N ·n·R1+N ·c·R2+N ·s·R3)+O (R1+R2+R3))
)

=
O(g·p·N ·n·R1+g·p·N ·c·R2+g·p·N ·s·R3). The complexity of
online test phase is the same as the complexity in decision
points, that is O (n·R1+c·R2+s·R3).

5 PERFORMANCE EVALUATION AND RESULTS

5.1 Simulation Environment Setup
5.1.1 Resource Environment
To test on representative simulations close to real-world
multi-cloud environments, we select three representative
cloud providers and service categories respectively. The
three providers are Amazon, Google and Microsoft. The
three resource categories are VMs (provided by all three
providers2), functions (provided by Amazon Lambda3, and
Google Cloud Functions4), and office365 (provided by Mi-
crosoft). The configurations of the virtual machine and
functions, based on [22], [48], [52] and the corresponding
official websites mentioned above, are shown in Table 3
and Table 4, respectively. Although there have been studies
focusing on serverless workflow modelling for real-world
platforms [15], [53], we are unable to follow those models
due to problem characteristics and platform limitations.
Therefore, we adopt a simplified model for AWS Lambda
functions’ computation capabilities, considering them pro-
portional to allocated memory, based on AWS’s resource
allocation guidelines. This approach aligns with precedents
in cloud workflow scheduling research [24], [54], [55] and
facilitates our use of a simulation platform for task execu-
tion time estimation. All the three providers we considered

2. https://aws.amazon.com/ec2/pricing/on-demand/,
https://cloud.google.com/compute/vm-instance-pricing, https://
azure.microsoft.com/en-gb/pricing/, https://instances.vantage.sh/.

3. https://aws.amazon.com/cn/lambda/
4. https://cloud.google.com/functions/pricing

Table 4
Function Category’s Types and Configurations

Type Cost
($/ms)

Memory
(MB) vCPU ECUb $/106Reqs GHz Total MIPS

A
W

S

1 2.9E-09 128 0.072a 0.024 0.2 \ 24.119
2 1.15E-08 512 0.289 0.096 0.2 \ 96.476
3 2.29E-08 1024 0.579 0.193 0.2 \ 192.953
4 4.58E-08 2048 1.158 0.386 0.2 \ 385.905
5 1.15E-07 5120 2.894 0.965 0.2 \ 964.764

G
oo

gl
e

1 2.31E-07 128 0.083 0.028 0.4 0.035c 27.667
2 9.25E-07 512 0.333 0.111 0.4 0.139 111.000
3 1.65E-06 1024 0.583 0.194 0.4 0.243 194.333
4 2.90E-06 2048 1 0.333 0.4 0.417 333.333
5 5.80E-06 4096 2 0.667 0.4 0.833 666.667

a At 1,769 MB, a function has the equivalent of one vCPU. https://
docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
b We assume a vCPU is roughly equivalent to 3.0 ECUs [52].
c 1 vCPU is equal to 2.4GHz. CPU. https://cloud.google.com/
functions/pricing

Table 5
Public cloud cluster traces [57]

Cloud
Vendor Dataset Released

Year Period Content

Googlea ClusterData2011 2011 1 month A single 12.5 k-machine Borg cell
ClusterData2019 2019 1 month Eight Borg cells

Azureb PublicDatasetV1 2017 2 M VMs and 1.2 B utilisation readings
PublicDatasetV2 2019 2.6 M VMs and 1.9 B utilisation read-

ings
FunctionsDataset2019 2019 2 weeks A subset of applications running on

Azure Functions
Alibabac Cluster-trace-v2017 2017 12 hours About 1300 machines

Cluster-trace-v2018 2018 8 days About 4000 machines and 1.43 × 107

tasks, the DAG information of pro-
duction batch workloads

a https://github.com/google/cluster-data
b https://github.com/Azure/AzurePublicDataset
c https://github.com/alibaba/clusterdata

support per-second billing, so we set the billing interval
for VM category to 1 second2. The billing interval for the
function category provided by Amazon is 1 ms3, and the
billing interval for the function category provided by Google
is 100 ms4. The category office365 is not listed in the tables,
since it is provided by only one provider. We assume that
the execution cost of this category of task is fixed, and only
consider the impact of task execution time on scheduling.
Additionally, new instances can be started at any time
for incoming tasks, regardless of office365 instance booting
time.

We assume that the customer can lease any resource
without any limitations [7], [22], and all required softwares
for executing workflows can be installed on each leased
resource category. It is worth mentioning that the function
instances have a maximum of 900 seconds per execution3. If
the execution time of a task on a function instance exceeds
900 seconds, the instance is unavailable. We set the boot time
of a VM instance to 55.9 seconds [56], and the boot time of
a function instance to 6.0 seconds. We set the average intra-
cloud bandwidth to 0.1 GB/s, the average inter-cloud band-
width to 0.05 GB/s and the unit price of data transmission
to 0.02 $/GB.

5.1.2 Workflow Applications
We consider the real cluster data released by cloud com-
puting vendors. At present, there are some large-scale en-
terprises that have disclosed some relevant data of cloud
computing, such as Google, Azure, Alibaba, etc. The concise
information of the data set is shown in the following Table 5.
The cluster data released by Alibaba in 2018 [23] contains the
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Table 6
The parameter settings of MTGP [30], [51].

Parameter Value

Population size 200
Number of generations 50

Method for initialising population Ramped-half-and-half
Initial minimum/maximum depth 2 / 7

Elitism 5
Maximal depth 8
Crossover rate 0.8
Mutation rate 0.15

Reproduction rate 0.05
Parent selection Tournament selection with size 7

Terminal/non-terminal selection rate 10% / 90%

DAG information of workflow that obtains the interdepen-
dence between tasks, which is very consistent with the pur-
pose of this study. Therefore, we select Alibaba cluster-trace-
v2018 in this study. We extract 5200 DAG structures from the
trace, where each DAG has at least 10 nodes. We also adopt
five realistic scientific workflows (including Montage, Cy-
berShake, Epigenomics, LIGO, and Sipht) commonly used
in research to verify the performance of our algorithm.
These data can be obtained from the workflow repository
available at Pegasus website (https://download.pegasus.
isi.edu/misc/SyntheticWorkflows.tar.gz).We choose work-
flows with 50, 100, 200 and 300 tasks, so we have 5×4×20 =
400 workflows (5 workflow types, each with 4 different task
numbers and 20 different data for workflows with different
task numbers).

Scenario Construction: Although these public data pro-
vide the DAG structure and the execution time of each
task, we need to construct data applicable to our problems
based on the known information, such as the weight of
the tasks and the number of invocations of the tasks. All
the reconstructed data are available at https://github.com/
zaixing-sun/MTGP DFWS-MCs. We classify the tasks of
each workflow into three categories ’VM’, ’function’, and
’office365’ in a ratio of 60%, 35% and 5%. The input and out-
put data of each task is assigned by a uniform discrete dis-
tribution between 500 and 5000 MB. Each DAG’s deadline
factor is randomly selected from the set {0.8, 1.0, 1.5, 1.8}.

Workflow arrival is modeled using the Poisson dis-
tribution with an arrive rate λ where the interarrival
time is exponentially distributed with 1/λ [58], where
λ ∈ {0.1, 0.2, 0.5, 0.8, 1.0}. For Cluster-trace-v2018, we ran-
domly divide these 5200 DAGs into 8 datasets: 300-0, 300-1,
500-0, 500-1, 800-0, 800-1, 1000-0, and 1000-1. For scientific
workflows, we divide these 400 DAGs into 2 datasets: 200-0
and 200-1. The datasets ending with ’-0’ are used for train-
ing, and the datasets ending with ’-1’are used for test. We
randomly select 10% the workflows from these 10 datasets
to simulate dynamic scenarios.

The name of each scenario is set to <wfNum, λ>, where
wfNum is the total number of workflows submitted and λ is
the arrival rate. Therefore, there are 5×4=20 scenarios for
training and test.

5.2 Baseline Algorithms and Evaluation Metrics
To evaluate the performance of the proposed MTGP algo-
rithm, we evaluated it along with DWS [7], REMSM [21]
and RMWS [27], which are three heuristic algorithms for
solving the cost-minimising dynamic (real-time) workflow

scheduling problem in the cloud. REMSM is indeed the
only existing method for solving the cost-minimising dy-
namic (real-time) workflow scheduling problem in multi-
clouds. Although DWS and RMWS are developed for single
cloud rather than multi-cloud, we compare with them for
the sake of more comprehensive comparison, as they are
solving the most similar problem, and they are popular
algorithms over the past five years. Moreover, they include
task and instance selection decisions, which makes them
suitable for making decisions in multi-clouds similar to
REMSM. To make the comparison as fair as possible, we
tried our best to adapt DWS and RMWS from single cloud
to multi-cloud. DWS handles the dynamics of multiple
deadline constrained workflows arriving randomly and
schedules these workflows with reduced cost. In DWS, the
task selection rule is based on the earliest sub-deadline first
strategy and the instance selection rule is based on a cost-
time trade-off factor. REMSM has better performance in
the terms of the monetary cost for dynamic workflow in
multi-cloud systems. In REMSM, the task selection rule is
also based on the earliest sub-deadline first strategy. For
instance selection rule, REMSM designs a balancing factor
similar to that of DWS to select instance, but the difference
is that REMSM gives priority to the instances that meet
the sub-deadline. RMWS is a real-time multiple-workflow
scheduling scheme to dynamically schedule workflows with
minimum cost under different deadline constraints. RMWS
designs a probability-based calculation method for sub-
deadline of tasks, and feeds back the information from
scheduled tasks to unscheduled tasks to update the sub-
deadline. The instance selection rule is based on task’s sub-
deadline and the increased cost of the VM. This paper and
all baseline algorithms have different calculation methods
for sub-deadline division.

In addition, based on our proposed algorithm, we also
compare the 2-decision MTGP with the 3-Decision MTGP.
We name the proposed 3-Decision MTGP as 3D and the
2-decision MTGP as 2D. We use all terminals (used for con-
structing the cloud selection rule and the instance selection
rule of 3D) to construct the instance selection rule of 2D.
2D has no cloud selection rule and the instance selection
rule in 2D also follows 3D. Since the algorithms in [38] and
[39] are based on the traditional GP framework, they need
to consider the extra features of our problem by extending
the terminal set so that they become 2D in our comparison
algorithm. In other words, the comparison algorithm 2D is
essentially the application of the algorithms of [38] and [39]
to our problem.

The core scheduling goal of multiple-workflow schedul-
ing in the cloud is to minimise the total monetary cost for
executing workflows under deadline constraints. In addi-
tion, to better evaluate the scheduling performance of the
algorithms, other indicators are considered as follows [27]:

1) Success rate: The success rate is the proportion of work-
flows that meet their scheduling deadline.

SR =
||g ∈ G|maxt∈T (g) x(t) + τe(t) ≤ ρ(t)||

|G|
(17)

2) Deadline deviation: The deadline deviation is defined
as the average duration percentage of exceeding work-
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Table 7

The mean (standard deviation) Total Monetary Cost on the test data of 30 independent runs of MTGP and baseline methods for different scenarios.

<wfNum, λ>a DWS REMSM RMWS 2D 3D

<20, 0.2> 762.85 1013.14(+) 861.02(0.00)(+)(-) 374.74(49.70)(-)(-)(-) 368.23(69.69)(-)(-)(-)(≈)b
<20, 0.5> 773.46 1017.62(+) 852.08(0.00)(+)(-) 383.00(65.33)(-)(-)(-) 371.46(59.07)(-)(-)(-)(≈)
<20, 0.8> 774.03 1018.08(+) 861.64(0.00)(+)(-) 399.83(92.15)(-)(-)(-) 348.68(39.54)(-)(-)(-)(-)
<20, 1.0> 770.33 1018.94(+) 861.88(0.00)(+)(-) 374.46(58.73)(-)(-)(-) 391.11(135.78)(-)(-)(-)(≈)

<30, 0.2> 779.40 448.25(-) 427.29(0.00)(-)(-) 431.71(3.43)(-)(-)(+) 420.02(19.00)(-)(-)(-)(-)
<30, 0.5> 779.71 446.67(-) 422.69(0.00)(-)(-) 430.33(3.16)(-)(-)(+) 415.00(3.09)(-)(-)(-)(-)
<30, 0.8> 779.32 448.13(-) 422.84(0.00)(-)(-) 431.43(6.95)(-)(-)(+) 419.10(13.76)(-)(-)(-)(-)
<30, 1.0> 779.56 448.54(-) 422.55(0.00)(-)(-) 430.10(3.09)(-)(-)(+) 416.03(9.24)(-)(-)(-)(-)
<50, 0.2> 1459.43 948.04(-) 1005.33(0.00)(-)(+) 967.16(79.57)(-)(≈)(-) 897.49(5.09)(-)(-)(-)(-)
<50, 0.5> 1467.81 947.45(-) 944.49(0.00)(-)(-) 947.09(14.41)(-)(-)(≈) 900.96(11.71)(-)(-)(-)(-)
<50, 0.8> 1465.29 946.74(-) 941.86(0.00)(-)(-) 949.32(24.63)(-)(+)(+) 899.55(9.48)(-)(-)(-)(-)
<50, 1.0> 1466.21 949.75(-) 938.91(0.00)(-)(-) 957.72(62.26)(-)(+)(+) 897.22(3.97)(-)(-)(-)(-)
<80, 0.2> 1857.49 1266.24(-) 1336.58(0.00)(-)(+) 1366.17(16.51)(-)(+)(+) 1243.68(41.51)(-)(-)(-)(-)
<80, 0.5> 1864.49 1275.71(-) 1288.46(0.00)(-)(+) 1366.55(13.97)(-)(+)(+) 1243.99(40.79)(-)(-)(-)(-)
<80, 0.8> 1872.60 1282.47(-) 1273.36(0.00)(-)(-) 1368.31(19.06)(-)(+)(+) 1238.22(25.44)(-)(-)(-)(-)
<80, 1.0> 1867.92 1274.92(-) 1288.32(0.00)(-)(+) 1363.08(6.75)(-)(+)(+) 1235.46(8.80)(-)(-)(-)(-)
<100, 0.2> 3435.03 2427.42(-) 2508.94(0.00)(-)(+) 2512.69(18.04)(-)(+)(≈) 2302.71(7.92)(-)(-)(-)(-)
<100, 0.5> 3445.77 2426.11(-) 2409.24(0.00)(-)(-) 2506.44(7.05)(-)(+)(+) 2299.77(4.72)(-)(-)(-)(-)
<100, 0.8> 3448.49 2428.72(-) 2362.35(0.00)(-)(-) 2509.21(11.07)(-)(+)(+) 2298.38(3.33)(-)(-)(-)(-)
<100, 1.0> 3453.03 2426.89(-) 2341.21(0.00)(-)(-) 2507.28(7.64)(-)(+)(+) 2309.49(27.07)(-)(-)(-)(-)

Win/Draw/Lose 0/0/20 0/0/20 0/0/20 0/3/17 N/A
Average Rank 4.6 3.49 2.74 3.04 1.13

a wfNum is the total number of workflows submitted and λ is the arrival rate.
b (-)(-)(-)(≈) indicates that 3D is significantly better than DWS, REMSM, and RMWS, while it has no significant difference from 2D.

flow deadlines in workflow set G.

DD =
∑
g∈G

max
t∈T (g)

{x(t)+τe(t)}+a(g)−ρ(g)

ρ(g)− a(g)

/
|G| (18)

We implement the simulation and MTGP in Python 3.10
and deploy it on a computer with a 3.80 GHz Intel Core i7-
10700K processor and 15.3 GB of memory. The parameters
of the MTGP are shown in Table 6.

For all the compared algorithms, 30 independent runs
are done for each scenario and the evolved scheduling
heuristics are tested on 50 unseen instances. The average
objective value across the 50 test instances is reported as
the test performance of the rule, which can be a good
approximation of the true performance of the rule.

Friedman’s test with a significance level of 0.05 is applied
to rank the algorithms based on their performance. If Fried-
man’s test gives significance results, we further conduct the
Wilcoxon rank-sum test with Bonferroni correction between
the proposed algorithm and other algorithms with a sig-
nificance level of 0.05 for the Nemenyi post-hoc pairwise
comparisons [35], [59], [60]. In the following results, “-”,
“+”, and “≈” indicate that the corresponding result is signif-
icantly better than, worse than, or similar to its counterpart.
An algorithm will be compared with the algorithm(s) before
it one by one. For the values of Total Monetary Cost and
Deadline Deviation, the smaller the better performance. For
the value of Success Rate, the bigger the better performance.
“Win, Draw, Lose” means the number of scenarios that a
compared algorithm is statistically better, similar, or worse
than 3D. “Average Rank” shows the average ranking of the
algorithm on all the examined scenarios.

5.3 Results
The runtime of the proposed method is acceptable in dy-
namic scheduling scenarios. Our algorithm mainly involves
three decision points, i.e. task/cloud/instance selection, and

the average decision-making time of each decision point in
the online test phase is less than 0.02 seconds. The runtime
data and analysis of scheduling algorithms are tabulated in
Section B of the supplementary file.

Table 7 shows the mean and standard deviation of the
monetary cost on the test data of 30 independent runs of
MTGP and the baseline methods for different scenarios.
Except that there is no significant difference between 3D
and 2D in scenarios <20, 0.2>, <20, 0.5> and <20, 1.0>
(which we analyse in the next section), the proposed 3D
method performs significantly better than all the baseline
methods in all other scenarios. For scientific workflows
(wfNum=20), DWS is the best baseline algorithms, but the
2D and 3D algorithms still outperform it by more than 45%.
The results also show that 3D performs the best with the
smallest rank based on the average ranking according to the
Friedman test, and is significantly better than the algorithms
in most of the scenarios. RMWS is the second-best among all
other algorithms (Average Rank=2.74). This demonstrates
that the scheduling heuristics learned by MTGP performs
significantly better than other human designed heuristics
on the scientific workflows. For Cluster-trace-v2018, 3D
significantly outperforms the other algorithms, followed by
RMWS, while the performance of DWS becomes worse.
For the same type of scientific workflows, their structures
are often similar. The workflows in Cluster-trace-v2018 do
not have a fixed DAG structure. This suggests that 3D is
more adaptable, while DWS is highly dataset dependent. As
the number of workflows increases, the performance of 2D
becomes progressively weaker than that of REMSM. Since
the other algorithms have 2 rules, i.e. only task and instance
selection rules, except for 3D which has 3 rules, we can also
conclude that learning three rules simultaneously is more
effective than (learning) two rules only.

DWS and REMSM do not have standard deviation val-
ues because they are deterministic heuristic algorithms. The
standard deviation of RMWS is 0.00 (round it to 0.01, which
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Table 8
The mean (standard deviation) Deadline Deviation and Success Rate on the test data of 30 independent runs of MTGP and baseline methods for

different scenarios.

<wfNum, λ> Deadline Deviation Success Rate

DWS REMSM RMWS 2D 3D DWS REMSM RMWS 2D 3D

<20, 0.2> -0.35 0.01(+) 0.01(+)(+) -0.07(0.06)(+)(-)(-) -0.04(0.02)(+)(-)(-)(≈) 0.89 0.42 0.39 0.97 0.95
<20, 0.5> -0.35 0.01(+) 0.02(+)(+) -0.08(0.06)(+)(-)(-) -0.04(0.02)(+)(-)(-)(+) 0.89 0.41 0.40 0.97 0.94
<20, 0.8> -0.35 0.01(+) 0.02(+)(+) -0.06(0.05)(+)(-)(-) -0.04(0.01)(+)(-)(-)(+) 0.89 0.39 0.38 0.97 0.95
<20, 1.0> -0.35 0.01(+) 0.02(+)(+) -0.07(0.06)(+)(-)(-) -0.04(0.01)(+)(-)(-)(+) 0.89 0.43 0.37 0.97 0.94

<30, 0.2> -0.56 -0.14(+) -0.12(+)(+) -0.14(0.03)(+)(≈)(-) -0.18(0.07)(+)(-)(-)(-) 0.98 0.97 0.94 0.99 0.99
<30, 0.5> -0.55 -0.13(+) -0.11(+)(+) -0.13(0.03)(+)(≈)(-) -0.19(0.06)(+)(-)(-)(-) 0.98 0.97 0.95 0.99 0.99
<30, 0.8> -0.55 -0.13(+) -0.12(+)(+) -0.14(0.03)(+)(≈)(-) -0.19(0.05)(+)(-)(-)(-) 0.98 0.97 0.95 0.99 0.99
<30, 1.0> -0.55 -0.13(+) -0.12(+)(+) -0.13(0.03)(+)(≈)(≈) -0.19(0.05)(+)(-)(-)(-) 0.98 0.97 0.95 0.99 0.99
<50, 0.2> -0.54 -0.12(+) -0.11(+)(+) -0.14(0.05)(+)(≈)(-) -0.26(0.09)(+)(-)(-)(-) 0.97 0.96 0.96 1.00 0.99
<50, 0.5> -0.54 -0.13(+) -0.10(+)(+) -0.14(0.04)(+)(≈)(-) -0.25(0.06)(+)(-)(-)(-) 0.97 0.96 0.96 1.00 1.00
<50, 0.8> -0.54 -0.12(+) -0.11(+)(+) -0.15(0.06)(+)(-)(-) -0.25(0.06)(+)(-)(-)(-) 0.97 0.95 0.95 1.00 0.99
<50, 1.0> -0.55 -0.13(+) -0.11(+)(+) -0.16(0.07)(+)(-)(-) -0.25(0.07)(+)(-)(-)(-) 0.97 0.96 0.95 1.00 0.99
<80, 0.2> -0.53 -0.10(+) -0.10(+)(+) -0.16(0.07)(+)(-)(-) -0.28(0.08)(+)(-)(-)(-) 0.97 0.95 0.97 0.99 0.99
<80, 0.5> -0.53 -0.10(+) -0.09(+)(+) -0.18(0.07)(+)(-)(-) -0.31(0.08)(+)(-)(-)(-) 0.97 0.94 0.95 0.99 0.99
<80, 0.8> -0.53 -0.10(+) -0.09(+)(+) -0.22(0.11)(+)(-)(-) -0.29(0.06)(+)(-)(-)(-) 0.97 0.94 0.95 0.99 0.99
<80, 1.0> -0.53 -0.10(+) -0.09(+)(+) -0.18(0.07)(+)(-)(-) -0.29(0.07)(+)(-)(-)(-) 0.97 0.94 0.94 0.99 0.99
<100, 0.2> -0.53 -0.10(+) -0.09(+)(+) -0.15(0.04)(+)(-)(-) -0.23(0.07)(+)(-)(-)(-) 0.96 0.96 0.97 0.99 0.99
<100, 0.5> -0.53 -0.10(+) -0.09(+)(+) -0.15(0.05)(+)(-)(-) -0.23(0.07)(+)(-)(-)(-) 0.96 0.96 0.96 0.99 0.99
<100, 0.8> -0.53 -0.10(+) -0.09(+)(+) -0.14(0.04)(+)(-)(-) -0.26(0.07)(+)(-)(-)(-) 0.96 0.96 0.95 0.99 0.99
<100, 1.0> -0.53 -0.10(+) -0.09(+)(+) -0.16(0.08)(+)(-)(-) -0.25(0.06)(+)(-)(-)(-) 0.96 0.96 0.96 0.99 0.99

Win/Draw/Lose 20/0/0 0/0/20 0/0/20 3/1/16 N/A 0/0/20 0/0/20 0/0/20 7/13/0 N/A
Average Rank 1.0 3.69 4.82 3.17 2.33 3.2 4.22 4.58 1.02 1.98

is actually close to 0), which mainly because the algorithm
only introduces a probability-based Boolean variable indi-
cating whether to consider the data transfer time, when
calculating the probabilistic upward rank. The results show
that the setting of this part has little effect on the perfor-
mance of the algorithm.

Table 8 shows the mean Deadline Deviation and Success
Rate on test data of 30 independent runs of MTGP and base-
line methods for different scenarios. The results show that
DWS achieves the smallest Deadline Deviation compared
to other algorithms, indicating that the cost-time trade-off
factor designed by this algorithm is more focused on time,
and consequently obtains a higher success rate. The main
reason is that DWS’s task selection rule is based on the
earliest deadline first strategy, and always prioritises tasks
having the nearest deadline, but tasks at the same level on
the same workflow have the same sub-deadlines. However,
for DWS, tasks at the same level on the same workflow have
the same sub-deadline. Nevertheless, DWS cannot select
more suitable instances to execute tasks on the Cluster-trace-
2018 datasets (as it has the highest cost). The main reason for
this is that DWS relies absolutely on the cost-time trade-off
factor to select instances and ignores whether the selected
instance meets the sub-deadline or not. 2D and 3D have
their own advantages for different types of datasets, but
both are significantly better than REMSM and RMWS. The
results in Table 8 also show that 2D and 3D always achieve
higher or similar Success Rate, especially reaching almost
100% on the Cluster-trace-2018 datasets. This result confirms
the performance of 2D and 3D on Deadline Deviation from
another aspect. The performance of 3D is always better on
Total Monetary Cost and Success Rate metrics, and only
slightly worse than DWS on Deadline Deviation, mainly
due to the trade-off between cost and time. 3D’s instance
selection rule is to prefer those instances with sub-deadlines
that can be met, whereas our goal is to minimise the total
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Fig. 6. The curves of the average total monetary cost of 2D and 3D over
30 independent runs on the test datasets of all the scenarios.

cost, so the rules learned by 3D tend to select instances that
have less cost and meet the sub-deadlines.

As the arrival rate increases, the performance of all
the algorithms change very slightly on the three metrics
considered, indicating that they can take advantage of the
elastic properties of the cloud to adapt to changes in the
environment.

In summary, the proposed 3D algorithm can achieve
better performance in all scenarios based on scientific work-
flows and Cluster-trace-2018 datasets, which further sug-
gests that the learned heuristic rules are more effective than
manually designed heuristic rules. It also achieves better
performance than 2D in the Cluster-trace-2018 dataset.
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Fig. 7. The curves of the average best different rule sizes and feature frequency of 2D and 3D over 30 independent runs in the scenario <50, 0.2>.
2D-R1 is task selection rule of 2D; 2D-R2 is instance selection rule of 2D; 3D-R1 is task selection rule of 3D; 3D-R2 is cloud selection rule of
3D; 3D-R3 is instance selection rule of 3D. ’2D Frequency Features. R1’ is the frequency features of the task selection rule of the 2D algorithm, and
the others are similar to it.
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Fig. 8. Examples of learned rules evolved by 3-Decision MTGP.

5.4 3-Decision MTGP Versus 2-Decision MTGP

Fig. 6 shows the curves of the average cost of 2D and 3D
over 30 independent runs on all scenarios test datasets.
The results show that although 3D has a higher cost in
most scenarios at generation 0, as the algorithms evolve,
the cost of 3D quickly becomes much lower than that of
2D. Due to the dynamic scheduling, their curves fluctuate
but generally show a downward convergence trend. For
scientific workflows (wfNum=20), the gap between 2D and
3D is smaller and their fluctuations are larger. Although
there is no significant difference between them in the three
scenarios, the curves of 3D are generally superior to those
of 2D. We can also see that as the number of workflows
increases, the gap between 2D and 3D becomes more signif-
icant and their fluctuations become smaller.

To investigate why 3D is better than 2D in most sce-

narios, we choose scenario <wfNum, λ> = <50, 0.2> to
carry out further analysis since other scenarios have similar
results. Fig. 7 shows the curves of the average best different
rule sizes and feature frequency of 2D and 3D over 30 inde-
pendent runs in the scenario <50, 0.2>. Although the sizes
of the task selection rules (R1) for 2D and 3D are always the
largest, their feature frequencies seem to always fluctuate
and there is no obvious stratification to specifically select
certain terminals. This suggests that these features play a
similar role in the construction of task selection rules. The
feature frequency plots of the instance selection rules and
the cloud selection rule show an obvious stratification as
the algorithm evolves, indicating that these terminals with
high feature frequencies help the algorithm to make efficient
decisions. Although 3D’s cloud selection rule almost always
has the smallest size, its two terminators, VEC and CC,
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R1 = TETRK+
2TETRK+min {NKQ,TETQ}−min

{
max {TETQ,TETRK} , UR

ET

}
min {2NSK,TETQ,UR}+ max{NSK,ET}

min{UR,max{TETQ,NSK}}

−
ET

min {UR,max {TETQ,NSK}}×TETQ
(19)

R2 = max
{
min

{
CC,max

{
max {VST,CC} −VIAT + CC2 +CC−VEC,NKWC

}
−VEC− CC

}
, 3VEC + CC

}
(20)

R3 = (AAT− ST)×AAT+ (
AAT

EC
−

ST

IAT
)×AAT× EC +

AAT

EC
×

ST

min {EC, IAT}
(21)

accounted for a total of 46.6% + 24.6% = 71.2% in the last
generation. This shows that 3D tends to select clouds with
smaller VEC and CC in each cloud. The size of the instance
selection rules for 3D is significantly larger than for 2D,
especially in the last generation where there are on average
40-24=16 more nodes. For the characteristic frequencies, EC,
AAT and ST in 3D account for 31.8%, 16.6% and 15.9%
respectively, while EC, CC, VEC and ST in 2D account for
28.0%, 19.4%, 12.2% and 10% respectively. The results show
that 3D not only focuses on EC, but also considers time-
related terminals in instance selection to select instance that
are suitable in terms of cost and time to execute tasks. In 2D,
there is no cloud selection rule and it has to focus on cost
(EC and CC).

In general, compared to 2D that selects a resource from
all available resources with larger selection space, the ad-
vantage of 3D lies in its ability to first consider the charac-
teristics and states of each cloud as a whole, and to select
a cloud that has lower overall execution and transmission
costs. Within this selected cloud with a smaller selection
space, 3D learns and uses more valuable terminals (such
as AAT and ST) so that it can select a resource that is more
suitable for the task in terms of time and cost.

5.5 Insight of evolved scheduling heuristics

To gain further understanding of the behaviour of the
scheduling heuristic evolved by the proposed method, an
evolved scheduling heuristic is selected to be analysed.
Fig. 8 shows three rules from the selected scheduling
heuristic evolved by MTGP in scenario (<wfNum, λ> =
<50, 0.2>). The selected scheduling heuristic has a promis-
ing test performance.

Fig. 8(a) shows that the task selection rule is a combi-
nation of six terminals (TETRK, NKQ, TETQ, UR, ET and
NSK), where TETQ and NSK are the most frequently used
terminals in this rule. The rule can be simplified as R1, as
shown in Eq. (19). We can know that this rule prioritises
workflow with a longer total execution time in ready queue
and task with more successors. Fig. 8(b) shows that the
cloud selection rule is a combination of five terminals (CC,
VEC, VST, NKWC and VIAT), where CC and VEC are
the most frequently used terminals in this rule. The rule
can be simplified as R2, as shown in Eq. (20). We can
know that this rule mainly relies on the interaction between
communication cost and average execution cost to select
cloud. Fig. 8(c) shows that the instance selection rule is a
combination of four terminals (AAT, EC, ST and IAT), where
AAT and EC are the most frequently used terminals in this
rule. The rule can be simplified as R3, as shown in Eq. (21).
We can know that this rule prioritises instances with smaller
actual available time and execution cost to execute tasks.

These three rules are consistent with the observations of
section 5.4.

Results show that dynamic workflow scheduling not
only needs easy-to-find factor design algorithms such as EC,
CC and SD, but also needs to dissect the scheduling process
and extract factors that can reflect the system state in detail,
such as TETQ and AAT. In addition, scheduling heuristic
rules learned through algorithm evolution are more effective
than those manually designed rules.

6 CONCLUSIONS

This paper considers a more near-realistic dynamic flexible
workflow scheduling in multi-clouds, where each cloud
can provide different service categories and the workflow’s
flexibility lies in its tasks being associated with specific
service categories. To the best of our knowledge, this is the
first work on dynamic workflow scheduling in multi-clouds
with multiple service categories. To solve the problem,
we develop a dynamic scheduling simulator to simulates
the workflow scheduling process in real-world scenarios,
which employs three scheduling heuristics to make deci-
sions at three decision points to keep scheduling going. The
proposed 3-Decision MTGP method can evolve the three
scheduling heuristics (i.e., task selection rule, cloud selection
rule and instance selection rule) simultaneously to meet
these decision points. 3-Decision MTGP is examined based
on two real-world data traces. The simulation results and
comparisons show that it can achieve up to 45% reduc-
tion in terms of total monetary cost compared to existing
algorithms in scientific workflow datasets, and it performs
significantly better than all baseline algorithms and its vari-
ant algorithm (2-Decision MTGP) in all scenarios based on
Cluster-trace-2018 datasets. Further analyses show that the
superiority of 3-Decision MTGP is realised by selecting a
cloud that has lower overall execution and transmission
costs, and then learning more valuable terminals (such as
AAT and ST) to select a more suitable resource for a task in
terms of time and cost.

In the future, we will consider applying this MTGP
method to solve multi-objective DFWS-MCs problems in
terms of reliability, rental cost and energy consumption. For
workflow scheduling in cloud environments, there may be
a large number of features, whose importance/relevance
varies from one to another. This work already shows the
importance of some features in different rules. Therefore,
we would like to investigate GPHH with feature selection to
find more promising features to schedule tasks properly and
further improve its performance. We also intend to analyse
the gaps between the dynamic scheduling simulator and
real-world scenarios.
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