
Journal of Combinatorial Optimization (2025) 49:34
https://doi.org/10.1007/s10878-025-01265-8

Energy-efficient real-timemulti-workflow scheduling in
container-based cloud

Zaixing Sun1 · Hejiao Huang1 · Zhikai Li1 · Chonglin Gu1

Accepted: 23 January 2025 / Published online: 22 February 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
Cloud computing has a powerful capability to handle a large number of tasks.However,
this capability comes with significant energy requirements. It is critical to overcome
the challenge of minimizing energy consumption within cloud service platforms with-
out compromising service quality. In this paper, we propose a heuristic energy-saving
scheduling algorithm, called Real-time Multi-workflow Energy-efficient Scheduling
(RMES), which aims to minimize the total energy consumption in a container-based
cloud. RMES schedules tasks in the most parallelized way to improve the resource
utilization of the running machines in the cluster, thus reducing the time of the global
process and saving energy. This paper also considers the affinity constraints between
containers and machines, and RMES has the ability to satisfy the resource quantity
and performance requirements of containers during the scheduling process. We intro-
duce a re-schedulingmechanism that automatically adjusts the scheduling decisions of
remaining tasks to account for the dynamic system states over time. The results show
that RMES outperforms other scheduling algorithms in energy consumption and suc-
cess rate. In the higher arrival rate scenario, the proposed algorithm saves energy
consumption by more than 19.42%. The RMES approach can enhance the reliability
and efficiency of scheduling systems.

Keywords Multi-workflow scheduling · Real time · Container cloud · Energy
minimization

1 Introduction

Cloud Service Platforms (CSPs) are a potent tool for handling large-scale scientific
applications that are frequently submitted by users in real-time in the form of work-
flows. These workflows are comprised of tasks with varying resource requirements,
each with a unique structure and its own Quality of Service (QoS) requirements,

B Chonglin Gu
guchonglin@hit.edu.cn

1 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-025-01265-8&domain=pdf
http://orcid.org/0000-0002-9656-6265

34 Page 2 of 21 Journal of Combinatorial Optimization (2025) 49 :34

including specific deadlines. CSPs provide consumers with the ability to access com-
puting and storage resources on-demand, facilitating the execution of their workflows
in a more streamlined and effective manner (Al-Dulaimy et al. 2022).

As a new virtualization technology, the container is more suitable for a real-
time multi-workflow scheduling scenario than the traditional virtual machines (VMs)
(Merkel 2014). Containers are lightweight, with lower overhead in terms of memory
and CPU usage, allowing for faster deployment and more efficient resource utiliza-
tion. Additionally, containers share the host system’s operating system, which reduces
redundant resource allocation, leading to lower energy consumption. These charac-
teristics make containers more suitable for real-time, energy-constrained scenarios
compared to VMs, where resource efficiency and rapid task execution are critical.
Specifying container affinities enables more effective management and allocation of
resources within a container cloud, ensuring that the diverse needs of multi-workflow
environments are adequately addressed.

With the rapid growth of cloud computing, the energy consumption of data centers
will rise significantly, from 200 terawatt hours (TWh) in 2016 to a staggering 2967
TWh by 2030 Katal et al. (2023). This surge in energy consumption not only increases
data center operating costs, but also exacerbates environmental damage. With these
challenges, it is crucial to minimize cloud service center energy consumption while
ensuring timely task completion.Nowadays, there aremany studies on energy-efficient
task scheduling in data centers. Hussain et al. (2021) and Sun et al. (2023) proposed
energy-saving task scheduling algorithms on cloud. However, the complex affinity
relationship between containers and physical machines introduces more restrictions
on energy-efficient scheduling decisions, so these methods cannot be directly applied
to container cloud scenarios.

Recent research has largely focused on the development of scheduling algorithms
to reduce energy consumption in data centers. In particular, studies have introduced
energy-efficient scheduling algorithms tailored for traditional cloud environments.
However, the intricate affinity relationships between containers and physical machines
introduce additional complexities to making energy-efficient scheduling decisions
in the container cloud environment, rendering these traditional methods less effec-
tive. Ding et al. (2020) proposed an energy-saving scheduling algorithm based on
Q-Learning for independent task scheduling in cloud. However, they does not consider
the important aspect of task dependencies, a key factor inworkflowscheduling. Particle
swarm optimization algorithm is used to solve the energy-saving scheduling problem
for executing micro-service applications in container-based cloud (Adhikari and Sri-
rama 2019). Despite their potential, these algorithms require significant computational
overhead for decision making, which may not be compatible with the requirements of
real-time scheduling scenarios where rapid response is essential.

To address the above limitations, we present the Real-timeMulti-workflowEnergy-
efficient Scheduling (RMES) algorithm in a container-based cloud to minimize the
energy consumption of the cluster while executing as many workflows as possible
on time. In a cluster, executing tasks in parallel can improve resource utilization,
reduce global process time, and reduce the number of machines running. Therefore,
RMES uses a rule-based scheduling strategy to execute tasks as parallel as possible
to save energy. RMES can also dynamically adjust the historical scheduling decisions

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 3 of 21 34

to adapt to the continuously changing system state in real-time scenarios. In addition,
RMES takes into account the affinity between the container and the physicalmachine in
scheduling, whichmakes it more suitable than other algorithms for solving the energy-
saving scheduling problem under the container cloud platform. Themain contributions
of this work can be summarized as follows:

– Taking into account the affinity constraints between tasks and machines, we
establish a real-time multi-workflow scheduling model on heterogeneous clusters.

– We present RMES, a heuristic scheduling algorithm that reduces cluster energy
consumption by parallel execution of tasks.

– RMES efficiently minimizes energy consumption in the cluster by proactively
identifying and shutting down underutilized physical machines.

– We evaluated the scheduling algorithm’s performance using real-worldworkflows.
Compared to existing algorithms, RMES reduces CSP energy consumption while
satisfying container and physical machine affinity constraints.

2 Related work

The workflow scheduling problem is classified as an NP-Complete problem (Sun et al.
2023). At present, there are many researches in energy-saving scheduling of container
cloud. There are four ways to solve these problems: accurate method, heuristics, meta-
heuristics and machine learning methods (Ahmad et al. 2021).

Mathematical modeling is mainly to model problems as common problems (Kaur
et al. 2020) (integer programming problem, mixed integer programming problem),
and then solve it by using accurate algorithms (branch and bound method, cutting
plane method, etc.). These accurate methods often fail to provide solutions solution
in a reasonable time, as the problem’s size increases.

Heuristics approximate the optimal scheduling of tasks on a cluster using predefined
scheduling rules. These approaches are significantly faster at making scheduling deci-
sions than othermethods because they are based on rules designed from experience. As
a result, heuristic techniques are well-suited for real-time scheduling scenarios. Havet
et al. (2017) reduced energy consumption in clusters by using generational garbage
collection principles, while striving to meet deadline constraints for all requests as
closely as possible. Hu et al. (2022) proposed adjustments to task scheduling decisions
that balance energy consumption with task execution times in real-time environments.
However, these methods have limitations, such as not fully accounting for real-time
constraints or overlooking specific resource constraints unique to container cloud
environments, including container affinity.

The meta-heuristic method, which primarily uses genetic algorithms, simulated
annealing, ant colony algorithms, and other techniques (Tan et al. 2019;Gan et al. 2010;
Azad andNavimipour 2017), iterates to discover the best solution in the problem space.
In Tan et al. (2019), the energy-saving scheduling problem is transformed into a two-
level (task-VM, VM-PM) bin-packing problem and solved by genetic programming.
However, this model can not be applied to the problem of using containers as resource
allocation units. In Gan et al. (2010), the authors use simulated annealing algorithm

123

34 Page 4 of 21 Journal of Combinatorial Optimization (2025) 49 :34

to deal with the parameters dimensionless in order to meet the different QoS needs of
users. In Shi et al. (2018), the authors propose a two-stage multi-type particle swarm
optimization approach, which reduces energy consumption during cluster operation.
Although these meta-heuristic algorithms can solve large-scale scheduling problems,
they focus on energy optimization in offline scenarios. In the real-time scenario, the
cluster needs to make scheduling decisions for the incoming tasks in time. Iterative
search requires a lot of calculation, andmay not generate scheduling decisions quickly
(Hu et al. 2022).

The machine learning method mainly uses reinforcement learning method and
learning the feedback of historical scheduling decisions to constantly adjust the
scheduling strategy of the cluster. In Ding et al. (2020), a Q-learning based algorithm
is proposed to reduces energy consumption of task execution in container cloud. How-
ever, the algorithm does not consider the interdependence between tasks. In Cheng
et al. (2018), a deep Q-learning-based two stage Resource Provisioning-Task Schedul-
ing processor learns scheduling strategies according to historical electricity prices and
requests to save energy. The authors of Kang et al. (2021) suggest an adaptive deep
reinforcement learning framework for task scheduling that improves resource utiliza-
tion to save energy consumption. The disadvantage of this machine learning method
is that historical scheduling data need to be collected in advance for model training.
Due to various constraints in the scheduling problem, many scenarios can not be well
modeled using machine learning method.

Since the heuristic method can generate scheduling decisions in a short time, and
some characteristics of container cloud can be used when setting heuristic rules, we
utilize the heuristic method to solve the problem proposed in this paper.

3 Problem formulation

3.1 Workflow and service instancemodel

Efficiently managing workflow applications from users in real-time is critical in
cloud computing. These applications consist of various requests, denoted as W =
{w1, w2, ..., wm}, each of which can be divided into several tasks that can be executed
either sequentially or in parallel. To represent a request, a directed acyclic graph (DAG)
can be used. A DAG is a way of showing how different tasks are related to each other
and the order in which they need to be executed to complete the request.

A request is modeled as wm = {wat
m , wtr t

m , wd
m,Gm} ∈ W , where wat

m is the arrival
time, wtr t

m is the maximum time a user can tolerate for a request to be executed, wd
m is

the deadline, and Gm is DAG structure of wm . The deadline, wd
m , can be calculated as

wd
m = wat

m +wtr t
m .Gm = (Tm, Em), where Tm is the set of tasks and Em represents the

dependency between tasks. Let {tm1, tm2, · · · , tm|Tm |} be the set of tasks Tm tmi (0 <

i ≤ |Tm |) is the i th task of wm . |Tm | is the total number of tasks in wm . Furthermore,
Em is a 0-1 matrix of Tm × Tm . emu,v = 1 implies a data dependence between tmu

and tmv , where tmu is the immediate predecessor of tmv . We model tmi as tmi =
{t Imi , t

image
mi , t typemi , tmid }, where:

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 5 of 21 34

Fig. 1 Task queue in container

– t Imi : the number of instructions contained in tmi .

– t image
mi : the image of container executing tmi .

– t typemi : the type of tmi .
– tdmi : the sub-deadline of tmi .

When a task needs to be executed, it is packaged with all the necessary software and
configuration settings into a container image. This container image is then deployed
on a physical machine (PM) for execution. The container image comprises all the
software dependencies and libraries required to run the task, making it a self-contained
and portable unit. The containerization approach enables the application to run in any
computing environment without worrying about the underlying infrastructure. It also
provides better resource utilization, enhances security, and enables faster deployment
and scaling. Let C be the set of all containers in the cluster. We define container
c j = {ctypej , ccpuj , cmem

j , ccachej , ctaintsj } ∈ C (0 < j ≤ |C|). The following are the
properties of each container in the cluster:

– ctypej : the type of task that container c j runs.

– ccpuj : the number of CPU cores required by container c j .
– cmem

j : the memory size required by container c j .

– ccachej : the set of tasks that have been assigned to container c j .

– ctaintsj : taint nodes, i.e., the set of PMs that cannot run container c j .

As illustrated in Fig. 1, each container is programmed to handle one task at a time,
and these tasks in the cache are divided into two states: waiting and executing. The term
"taint node" is used to identify a specific group of physical machines (PMs) that are not
suitable to run a particular container due to factors determinedby the user. These factors
may include the absence of specific hardware components necessary for the container
or the PM’s hardware failing to meet the minimum performance standards required
for running the container. There is a direct correspondence between containers and
tasks, where each container is associated with a single task. Consequently, a container
of a particular type is restricted to running tasks of the same type, and similarly, tasks
of a particular type are restricted to running on containers of the corresponding type.
Containers are instantiated from images associatedwith their respective tasks, ensuring
that the container environment is configured precisely to meet the requirements of the
task.

Let P = {p1, p2, . . . , p|P |} be the set of PMs provided by CSP. The kth PM

pk = {pt_cpuk , pt_mem
k , pt̄,u_cpuk , pt̄,u_mem

k , pck, p
e_total
k , pe_basek , pipsk }, where:

123

34 Page 6 of 21 Journal of Combinatorial Optimization (2025) 49 :34

– pt_cpuk : the number of CPU cores of the pk .
– pt_mem

k : the memory resources of the pk .

– pt̄,u_cpuk : the number of CPU cores used in pk at t̄ moment.

– pt̄,u_mem
k : the memory resources used in pk at t̄ moment.

– pck : the set of containers that are currently running in pk .

– pe_totalk : the power consumption of the pk under full load.

– pe_basek : the power consumption of the physical machine when it is idle.

– pipsk : the number of instructions that a single core of pk can process per second.

pt̄,u_cpuk , pt̄,u_mem
k can be calculate by Eqs. ((1), 2).

pt̄,u_cpuk =
∑

c j∈C
x t̄j,kc

cpu
j , (1)

pt̄,u_mem
k =

∑

c j∈C
x t̄j,kc

mem
j , (2)

where x t̄j,k ∈ {0, 1}. x t̄j,k = 1 indicates that the container c j is running in pk at t̄
moment. According to the widely-used model in cloud computing energy analysis
(Ding et al. 2020; Beloglazov et al. 2011), we model the relationship between the
power of the pk and the CPU utilization at t̄ moment by Eq. (3), where Pt̄

k represent
the power of pk at t̄ moment.

Pt̄
k =

⎧
⎨

⎩
0, pk is o f f ,
pt̄,u_cpuk

pt_cpuk
(pe_totalk − pe_basek) + pe_basek , pk is on.

(3)

3.2 Cloud workflow schedulingmodel

This paper aims to minimize the total energy consumption for workflow execution,
which can be expressed by Eq. (4). T denotes the total execution time of the system.

E =
T∑

t̄=0

|P |∑

k=1

Pt̄,
k , (4)

Task Dependency Constraints. All tasks can only be executed when their predecessors
have finished or when there are no predecessors due to dependencies between tasks.
t EST
mu is the earliest start time of tmu . t FTmv is the finish time of tmv . Pred(tmu) =
{tmv|emv,u = 1,∀ tmv ∈ Tm} is the set of immediate predecessors of tmu .

max
tmv∈Pred(tmu)

t FTmv ≤ t EST
mu , (5)

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 7 of 21 34

Deadline constraint. We need to ensure that workflows can be finished on time when
the scheduler makes decisions.

max
tmv∈Tm

t FTmv ≤ wd
m . (6)

Task andContainer placement constraint. A task can be deployed on a single container
of the same type. The binary variable yt̄mi, j is either 0 or 1 in Eq. (7). If it is 1, it means
that the task tmi is deployed on the container c j . If it is 0, it means that tmi is not
deployed on c j . Resource level constraints must be met when deploying containers
to PMs. Equation (9) and Eq. (10) ensure that the resources used by the container
deployed on the PM do not exceed the total resources of the PM. Equation (11)
ensures that a container can only be deployed on one PM and that this PM cannot be
a taint node of c j .

|C|∑

j=1

yt̄mi, j = 1. (7)

t typemi = ctypej , yt̄mi, j = 1. (8)
∑

c j∈C
x t̄j,kc

cpu
j ≤ pt_cpuk , (9)

∑

c j∈C
x t̄j,kc

men
j ≤ pt_mem

k , (10)

|C|∑

j=1

x t̄j,k = 1, pk /∈ ctaintsj . (11)

Based on the above discussion, we can formulate the constrained optimization
problem as follows:

Minimize E, (12a)

Subject to: (12b)

Eq.(5), tmu ∈ Tm, wm ∈ W, (12c)

Eq.(6), wm ∈ W, (12d)

Eq.(7), tmi ∈ Tm, wm ∈ W, (12e)

Eq.(8), tmi ∈ Tm, wm ∈ W, c j ∈ C, (12f)

Eqs.(9), (10), (11), pk ∈ P (12g)

x t̄j,k ∈ {0, 1}, pk ∈ P (12h)

yt̄mi, j ∈ {0, 1}, tmi ∈ Tm, wm ∈ W, c j ∈ C (12i)

where the decision variables are x t̄j,k and yt̄mi, j .

123

34 Page 8 of 21 Journal of Combinatorial Optimization (2025) 49 :34

Fig. 2 Schedule System

4 Real-timemulti-workflow energy-efficient scheduling algorithm

This section describes the RMES algorithm in detail. First, we introduce the structure
of the scheduling system. Then, we introduce the algorithms of each phase of RMES.

4.1 Scheduling architecture

Fig. 2 shows the real-time workflow scheduling architecture. The system architecture
is segmented into three primary components: end users, instance clusters, and the
scheduler. This structure enables users to submit workflow requests at any given time.
The scheduler plays a crucial role in allocating user-submitted workflows to instance
clusters for optimal system operation.

A scheduler comprises various components, such as the request preprocessor, task
pool, rescheduling trigger, scheduling decision maker, executor and monitor. When
a workflow request is received by the scheduler, the request preprocessor takes the
lead role by dividing the workflow into tasks. For each task, the preprocessor also
sets a deadline and priority. The following are the steps involved in task scheduling
and execution: Step 1: Tasks are added to the task pool. Step 2: The rescheduling
trigger receives the status of the task pool and determines whether general scheduling
or rescheduling is necessary. Step 3: Based on the trigger’s decision, the scheduling
decision-maker generates the scheduling plan. Step 4: The scheduler extracts the nec-
essary task information from the task pool. Step 5: The scheduling decisions are sent

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 9 of 21 34

to the executor for task execution. Step 6: During the execution period, the cluster’s
running state is adjusted based on the received instructions. Step 7: The monitor con-
stantly monitors the cluster’s status. Step 8: The monitor updates the task pool with
the latest information.

4.2 Request preprocessor

This particular component has two functions. Firstly, it sets a sub-deadline for tasks
that are included in a user’s request. Secondly, it sorts these tasks based on their priority.
The sub-deadline for each task is determined by its topological level in the request. In
this context, the topological level of a task (tmi) is calculated using a specific formula
(Eq.(13)). For each level, we take the task with the most instructions as the critical
task of that level. Then, we determine the execution time of that level (leveltime

l) by
considering the duration of the critical task on the fastest machine.

Lev(tmi) =
⎧
⎨

⎩
1, Pred(tmi) = ∅

max
tmj∈Pred(tmi)

Lev(tmj) + 1, other . (13)

Leveltl = {tmi |Lev(tmi) = l)} (14)

t̂l = arg max
tmi∈Leveltl

(t Imi) (15)

p̂ = arg max
pk∈P

(pipsk) (16)

leveltime
l = cloadj + t̂l

p̂i ps · ccpuj

, ctypej = t̂ t ypel , (17)

where t̂l is the task with highest number of instructions in level l, p̂ is the fastest single
core PM, and cloadj is the duration required for preparing the container for handling
tasks after deployment. We can model the estimated processing time for wm as Eq.
(18). Then we can set the sub-deadline of tmi as Eq. (19).

wet
m =

L∑

l=1

leveltime
l , (18)

tdmi = leveltime
l

wet
m

· wtr t
m + wat

m , Lev(tmi), (19)

where L is the maximum level in wm .
The prioritization of tasks is determined by a ranking method that considers the

number of subsequent tasks associated with each task, including immediate and medi-
ate successors. We define d(tmu) as the set of tasks dependent on tmu , including all
tasks directly or indirectly dependent on it.

123

34 Page 10 of 21 Journal of Combinatorial Optimization (2025) 49 :34

d(tmu) = (
⋃

tmv∈Sub(tmu)

d(tmv)) ∪ tmu, (20)

Rank(tmu) = |d(tmu)|, (21)

Sub(tmv) = {tmu |emu,v = 1,∀ tmu ∈ Tm} represents the set of immediate successors of
tmv . A task’s rank is a crucial factor in determining its priority level for scheduling.
Tasks with a higher rank are given priority over others at the same level in the topol-
ogy. It is essential to assign the correct rank to a task to ensure efficient and timely
completion of the workflow.

4.3 Task pool

The task pool is a comprehensive record of the current status of taskswithin the system.
These tasks can be categorized into various types within the cluster, such as:

– Task not ready Tasks cannot be initiated until their dependencies have been
fulfilled.

– Task ready These tasks have completed their preceding tasks and are waiting for
scheduling by the system based on priority and resource availability. They are
currently pending execution on a node.

– Task scheduled These tasks have been assigned to a container, but have not yet
commenced execution.

– Task running These tasks are currently being processed by the container and are
actively consuming resources.

– Task finished Tasks that have been finished on time and are no longer consuming
resources.

– Task fail Tasks that were not completed within the given time.

In summary, the task pool system provides a detailed categorization of tasks in a
cluster, which is essential for efficient task management. The system enables users to
keep track of the progress of each task and provides valuable insights into resource
allocation and utilization.

4.4 Re-scheduling trigger

In real-time scenarios, it is essential to optimize task scheduling to ensure efficient
resource utilization. However, most scheduling strategies only schedule tasks once,
whichmay lead to suboptimal results.When the systemmakes scheduling decisions on
tasks, it generates an approximate optimal strategy according to the system state when
scheduling. Real-time systems can receive requests at any time, leading to fluctuations
in the state of tasks within the system. Sometimes, a task that has been scheduled could
have a better scheduling decision in the current system state, even before its container
starts execution. However, rescheduling all tasks in the system for each new task
arrival can significantly increase the scheduling cost and adversely affect the quality
of service. To resolve this issue, the state of unprocessed tasks in the system at time t
is described by θt .

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 11 of 21 34

θt = |Newtaskt |
|Alltaskt | , (22)

where Newtaskt is the set of new executable tasks at t moment and Alltaskt is the
set of tasks that can be excuted but have not started. α(0 < α < 1) is re-schedule
factor. When θt is greater than α, it indicates that the task state in the system has
changed significantly, and rescheduling decisions would be a better choice. By bal-
ancing the need for rescheduling with the cost of doing so, the system can achieve
optimal performance and maintain a high quality of service.

4.5 Scheduling decision-maker

After completing the aforementioned stages, the system has screened and sorted tasks
for scheduling. These tasks will be scheduled based on their priority. When select-
ing the target container and machine, it is essential to consider schemes that prioritize
energy efficiencywhile ensuring timely task completion. The versatility of themachine
should also be taken into account. However, it is crucial to note that excessive deploy-
ment of containers on highly versatile machines may result in resource shortages
for more demanding tasks that require more resources. Therefore, a comprehensive
approach is recommended while selecting scheduling objectives, weighing the energy
consumption causedbymachine deployment and the universality of the targetmachine.
Such an approach will help us determine the optimal scheduling objectives.

To effectively calculate new energy consumption after deployment, we can
categorize the scenarios into the following cases:

– A In this case, a container has been deployed, and its running time won’t exceed
the maximum running time of the container deployed on the physical machine it
was assigned to.

– B This scenario occurs when a deployed container’s running time exceeds the
maximum running time of the container deployed on the physical machine it was
assigned to.

– C In this case, a new container needs to be deployed on a physical machine that
has already been powered on, and the running time of the machine won’t change.

– D This scenario occurs when a new container needs to be deployed on a physical
machine that has already been powered on, which will increase the running time
of the machine.

– E This is when a new physical machine needs to be deployed to accommodate the
new container.

– F This scenario arises when there are insufficient resources in the cluster to
complete the task within the required time.

It is essential to note that the energy consumption estimation post-deployment is crit-
ical in ensuring the efficient and effective operation of the cluster. By categorizing
the scenarios, it becomes feasible to determine the energy consumption for each sce-
nario and optimally allocate resources. Based on the aforementioned cases, the energy
consumption resulting from the deployment tasks can be calculated using the Eq. (23).

123

34 Page 12 of 21 Journal of Combinatorial Optimization (2025) 49 :34

�E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ccpuj

pcpuk
· (pe_totalk − pe_basek) · t̄r , A

ccpuj

pcpuk
· (pe_totalk − pe_basek) · t̄r + t̄e · pe_basek , B

ccpuj

pcpuk
· (pe_totalk − pe_basek) · (t̄r + t̄ p), C

ccpuj

pcpuk
· (pe_totalk − pe_basek) · (t̄r + t̄ p) + t̄e · pe_basek , D

ccpuj

pcpuk
· (pe_totalk − pe_basek) · (t̄r + t̄ p) + (t̄r + t̄ p + t̄s) · pe_basek , E

(23)

tr = t Imi

pipsk · ccpuj

, (24)

where c j is the container to deploy task tmi and pk is the PM to deploy task tmi . t̄r is
the execution time of the task. t̄e is the extended execution time of PM. t̄ p is the start
time of container. t̄s is the start time of PM. The universality of each PM (puk , Eq. (25))
is calculated based on the taints node information submitted by the user.

puk = |Cavail |
|C| , (25)

where Cavail is a set of containers which may be deployed to pk . The higher puk means
that pk is more versatility.

To achieve the scheduling goals, the system is designed to distribute tasks based on
minimal energy consumption andmore exclusive use of PMs. The energy consumption
of deploying ti to container c j and PM pk is calculated by Qi, j,k ∈ Q as represented
by Eq. (26). The system is programmed to prioritize the deployment of tasks with a
higher Q scheme, in order to ensure that the system runs efficiently and effectively.

Qi, j,k = β�Ei, j,k + (1 − β)puk , (26)

where β (0 < β < 1) is the weight of energy consumption in scheduling decision.
The detailed procedure is given in Algorithm 1. taskready and taskscheduled rep-

resent task sets of type task ready and task scheduled in the task pool, respectively.
< Qn,i, j , ci , p j > means assign taskn to ci running in p j . To ensure efficient task
scheduling, the system first evaluates the current state of tasks and decides whether
to reschedule them or not (lines 2-10 of Algorithm 1). Then, the system gets the Q
value of the task that needs to be scheduled and deploys it to the container with the
lowest Q value (lines 11-24 of Algorithm 1). If there is no suitable container available,
the system creates a new one and selects the PM with the lowest Q value to run the
container (lines 25-41 of Algorithm 1). This ensures that tasks are executed in a timely
and efficient manner, leading to better overall system performance.

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 13 of 21 34

Algorithm 1: RMES
Input: taskready , taskscheduled ,C,P
Output: {xn, j } ,{yi, j }

1 scheduletask ← ∅;
2 Calculate ,θt according Eq. (22);
3 if θt > α then
4 foreach tn ∈ taskscheduled do
5 scheduletask ← scheduletask ∪ {tn};
6 end
7 end
8 foreach tn ∈ taskready do
9 scheduletask ← scheduletask ∪ {tn};

10 end
11 foreach tn ∈ scheduletask do
12 target ← ∅;
13 foreach ci ∈ C do
14 if ctypei = tasktypen then
15 Calculate Qn,i, j according Eq. (26);
16 target ←< Qn,i, j , ci , p j >;
17 end
18 end
19 if target �= ∅ then
20 select ci with minimum Q;
21 xn, j ← 1;
22 scheduletask ← scheduletask − {taskn};
23 end
24 end
25 if scheduletask �= ∅ then
26 foreach tn ∈ scheduletask do
27 target ← ∅;
28 create container ci ;
29 foreach pm j ∈ P do
30 Calculate Qn,i, j according Eq. (26);
31 target ←< Qn,i, j , ci , p j >;
32 end
33 if target �= ∅ then
34 select ci with minimum Q;
35 xn, j ← 1;
36 yi, j ← 1;
37 scheduletask ← scheduletask − {taskn};
38 C ← C ∪ {ci };
39 end
40 end
41 end

123

34 Page 14 of 21 Journal of Combinatorial Optimization (2025) 49 :34

Fig. 3 Sample structure of five scientific workflows used in the evaluation of the algorithms

5 Performance evaluation

5.1 Workflow applications and resource environment

Wewill evaluate the algorithm using five workflows that were widely used in previous
work Juve et al. (2013); Deng et al. (2019): Epigenomics, CyberShake, LIGO, Mon-
tage, and SIPHT1 Those workflows are shown in Fig. 3. Workflow arrival is modeled
using the Poisson distribution with an arrive rate (Deng et al. 2019). To solve the
deadline-constrained workflow scheduling problem in the actual scenario will not be
strictly consistent, we set different deadline factors for workflows, denoted as wmin

m .
It takes the longest critical path in the workflow to run on the fastest PM.

wtr t
m = γ · wmin

m , 2 ≤ γ ≤ 8 (27)

The deadline factor γ ranges from 2 (representing very tight deadline constraints) to
8 (relatively loose deadline constraints). When assigning deadline to each workflow,
we select γ according to the uniform distribution within the range given in Eq. (27),
and then assign the deadline calculated by the selected γ to the workflow.

As shown in Table 1, We use 8 types of PMs (Third quarter 2021). According to
the results of parametric experiments, re-schedule factor α is set to 0.05. We establish
the simulation in Python 3.8.5 on a Ubuntu 20.04.2 LTS with i5-9500 3.0GHz CPU
and 32 GB RAM.

We create six scenarios - five homogeneous ones, eachwith only oneworkflow type,
and one heterogeneous scenario with all workflow types. Then, we conduct several

1 The Pegasus project: https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz.

123

https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz

Journal of Combinatorial Optimization (2025) 49 :34 Page 15 of 21 34

Table 1 Real-world PM types

Type CPU cores Mem(GB) Basic power (w) Full load power (w)

PM1 4 4 43 115

PM2 4 8 63 115

PM3 8 8 89.4 173

PM4 8 16 155 269

PM5 8 18 173 334

PM6 8 32 226 294

PM7 16 16 299 521

PM8 32 32 260 748

experiments to assess the performance of each algorithm with different workloads,
workload patterns, and workflow types. In the experiment, we use six kinds of work-
flows, including five homogeneous hybrid workflows and one heterogeneous hybrid
workflow. We generate homogeneous hybrid workflows from workflow requests of
different sizes belonging to the same structure. Heterogeneous hybrid workflow is
composed of five workflow structures: Montage, LIGO, Epigenomics, SIPHT and
CyberShake. We randomly select the above five workflows according to equal prob-
ability to generate hybrid workflows. In order to conduct our experiments, we have
identified three key parameters: arrival rate λ, workflow scale scale, and compatibility
δ. We have built upon previous studies, such as Deng et al. (2019) and Arabnejad et al.
(2019), by using four Poisson distributions to represent λ with arrival rates of 1, 5,
10, and 15 workflows per second. We have also categorized workflow scale as small,
medium, and large, with each scale consisting of a combination of multiple workflows.
The total number of tasks in each scale is 1000, 2000, and 3000 respectively, and larger
scales contain more tasks. By carefully selecting these parameters, we aim to conduct
comprehensive experiments that will yield valuable insights into the performance of
our system. We set compatibility to 0.2, which represent 20% of the PMs in the clus-
ter as taints of the task. Compatibility δ has three parameters: 0, 0.2 and 0.5, which
respectively represent 0%, 20% and 50% of the PMs in the cluster as taints of the
task. To ensure the best performance, we assessed the degree of selectivity required
for the PMs in the cloud service provider cluster. For each workflow structure, we
conducted a series of experiments with varying values for three key parameters. In
total, we conducted 36 groups of experiments for each workflow structure.

5.2 Comparison algorithm

To verify the effectiveness of our proposed algorithm,we conduct a comparative analy-
sis with four existing algorithms: Random andRound-Robin, ROSA (Chen et al. 2018)
and DWS (Arabnejad et al. 2019). Random is a scheduling strategy that randomly
assigns tasks to containers and schedules them to run on random machines. Round
Robin is a default scheduling strategy in Kubernetes that assigns tasks to appropri-
ate containers and PMs based on polling rules. ROSA is an uncertainty-aware online

123

34 Page 16 of 21 Journal of Combinatorial Optimization (2025) 49 :34

Fig. 4 The energy consumption of each workflow with DWS, ROSA, Round-Robin, Random and RMES

scheduling algorithm for dynamic and multiple workflow scheduling with deadlines.
The algorithm first estimates the task completion time, and then schedules the task to
minimize the cost. DWS is an online heuristic algorithm that aims to minimize the cost
of renting service instances under the deadline. When a new workflow is received, the
system sets heuristic rules based on the cost deadline to schedule the task on a more
suitable instance.

To ensure a fair experiment, we replace the optimization objective function in
ROSA and DWS with the same energy consumption objective function as RMES.
This approach allows us to compare the algorithms based on the same criteria and
provides a constructive evaluation of their performance.

5.3 Simulation results

5.3.1 Arrival rate

Figures4 and 5 show the energy consumption and success rate results of the algorithms
under different workflow structures. The arrival rate is increased from 1 to 15 in
the case of medium workflow scale and compatibility is 0.2. The success rate is the
proportion of workflows that meet their scheduling deadline. The experimental results
demonstrate that RMES performed exceptionally well, surpassing other algorithms in
most cases. Specifically, as the arrival rate increased, RMES algorithm’s performance
improved significantly. For an arrival rate of 1 workflow per second, RMES algorithm
outperformed DWS, ROSA, Random and Round-Robin by −1%, −10%, 18.45%,

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 17 of 21 34

Fig. 5 The Success Rate of each workflow with DWS, ROSA, Round-Robin, Random and RMES

Fig. 6 The Success Rate of each workflow with DWS, ROSA, Round-Robin, Random and RMES

and 34.11%, respectively. When the arrival rate reached 15 workflows per second,
RMES algorithm improved to 40.57%, 19.42%, 27.89%, and 39.40%, respectively.
With an increased arrival rate, the proportion of newly arrived tasks in the task pool also
increased, leading to significant changes in the task pool’s status. Therefore, RMES’s
rescheduling mechanism allowed the unexecuted tasks in the system to be rescheduled
promptly. This ensured that the scheduling results of tasks in the task pool were more
in line with the current state of the task pool.

In Fig. 6, we can find that under the four workflow structures of CyberShake, Mon-
tage, LIGO and multi, the success rate of all algorithms is 100%, but under the two
workflow structures of Epigenomics and LIGO, the success rate of all algorithms fluc-
tuates. Nevertheless, RMES still maintains a higher completion rate, and in the worst
case, the success rate still reaches the highest 89.2%.

123

34 Page 18 of 21 Journal of Combinatorial Optimization (2025) 49 :34

Table 2 The energy consumption of each workflow with DWS, ROSA, Round-Robin, Random and RMES

Workflow, size Random Round-robin DWS ROSA RMES

Montage, S 0.47 0.79 0.64 0.52 0.37

Montage, M 0.83 1.10 1.06 0.73 0.55

Montage, L 1.62 1.77 1.72 1.17 1.22

LIGO, S 13.12 18.96 9.95 9.16 9.64

LIGO, M 19.86 22.81 21.68 14.71 11.98

LIGO, L 23.17 24.69 27.85 19.74 17.46

CyberShake, S 0.85 0.95 0.80 0.75 0.67

CyberShake, M 1.51 2.55 1.84 1.25 0.94

CyberShake, L 1.85 2.44 2.17 1.60 1.30

Epigenomics, S 208.48 205.63 216.23 216.22 206.24

Epigenomics, M 141.98 144.15 145.72 147.13 146.19

Epigenomics, L 163.81 162.89 160.84 172.21 162.00

SIPHT, S 12.92 13.14 17.49 12.08 11.18

SIPHT, M 13.09 15.20 12.37 10.02 10.08

SIPHT, L 30.89 46.99 44.93 28.90 23.99

multi, S 6.21 8.06 6.01 4.44 3.86

multi, M 10.95 13.91 10.85 10.95 5.51

multi, L 27.49 34.94 24.80 17.12 12.44

5.3.2 Workflow scale

Table. 2 and Fig. 6 show the energy consumption and success rate results of the algo-
rithm under different sizes and different workflow structures when the arrival rate
is 10 workflows per second and the compatibility is 0.2. In Table. 2, ’Montage, S’
means Montage workflow small-scale test example. It’s worth noting that except for
two workflow structures exhibiting fluctuating completion rates, RMES outperforms
other algorithms significantly. The results suggest that RMES can be a promising
choice for managing workflows with high success rates and low energy consumption.
Under the three workflow structures of multi, SIPHT and CyberShake, the improve-
ment of RMES and the comparison algorithm with the best performance increases
from 13.06%, 7.45% and 10.66% on a small scale to 27.33%, 16.98% and 18.75%
on a large scale. We find that RMES algorithm has a greater improvement under the
condition of large-scale workflow. Under Epignomics and LIGO, the success rate of
all algorithm has not reached 100% in all workflow scales. Nevertheless, RMES still
maintains the relatively highest completion rate.

5.3.3 Compatibility

In order to test the impact of the different compatibility of the submitted workflow
with the physical machine on the scheduling results, we conducted several groups of
experiments under the condition of medium-scale workflows and arrival rate of 10

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 19 of 21 34

Fig. 7 The energy consumption of each workflow with DWS, ROSA, Round-Robin, Random and RMES

Fig. 8 The Success Rate of each workflow with DWS, ROSA, Round-Robin, Random and RMES

workflows/second, and the results are shown in Figs. 7 and 8. With the improvement
of compatibility requirements, under the three workflow structures of Epigenomics,
LIGOandMontage, the success rate of all algorithms has decreased to varying degrees.
This is because higher compatibility requirements mean that the same task can only
be run by fewer machines. As fewer machines can run the task, the completion
rate decreases. Since RMES considers the limitation of compatibility when making
scheduling decisions, RMES still maintains the highest completion rate among all
algorithms as the compatibility becomes more and more stringent. In the experiment
of Epigenomics, the success rate can only reach about 70%. However, compared with

123

34 Page 20 of 21 Journal of Combinatorial Optimization (2025) 49 :34

other algorithms, RMES algorithm still maintains a higher success rate under more
stringent compatibility requirements.

Under the three workflow structures of CyberShake, SIPHT andmulti, although the
completion rate of all algorithms has reached 100%, RMES is still more advantageous
in terms of energy consumption. The overall energy consumption decreases with the
increase of compatibility requirements. Themain reasons are the following two points:
under the condition of high compatibility requirements, more tasks are not executed
due to the timeout default of predecessor tasks. This requirement leads to the need
for the cluster to open more machines to perform tasks at the same time. It uses more
machines, but reduces the execution time of a single machine.

6 Conclusion

In this paper, we focus on optimizing the energy-efficient real-time scheduling of mul-
tiple workflows in a container-based cloud. First, we establish a cloud-based workflow
scheduling model, which considers resource quantity and performance constraints of
container deployment. We then propose an real-time multi-workflow energy-efficient
scheduling (RMES) algorithm. RMES can compress the global process time to reduce
the base energy consumption by executing tasks in parallel on the running PM. In
addition, RMES integrates a rescheduling mechanism to dynamically adjust task
scheduling decisions in response to changes in system state. To evaluate the effec-
tiveness of RMES, we conducted a series of experiments under realistic workflow
conditions. The results show that RMES significantly outperforms existing algorithms
in reducing the energy consumption of cloud service providers (CSPs). In future work,
we intend to consider resource competition of containers deployed on the same phys-
ical machine in our model to further refine the efficiency and effectiveness of our
scheduling approach.

Acknowledgements This work is financially supported by Shenzhen Science and Technology Program
under Grant No. JCYJ20210324132406016 and National Natural Science Foundation of China under Grant
No. 61732022.

Funding The authors have not disclosed any funding.

Data Availability Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

Adhikari M, Srirama SN (2019) Multi-objective accelerated particle swarm optimization with a container-
based scheduling for internet-of-things in cloud environment. J Netw Comput Appl 137:35–61

Ahmad I, AlFailakawi MG, AlMutawa A, Alsalman L (2021) Container scheduling techniques: a survey
and assessment. J King Saud Univ-Comput Inf Sci 34(7):3934–3947

123

Journal of Combinatorial Optimization (2025) 49 :34 Page 21 of 21 34

Al-DulaimyA,Taheri J,KasslerA,HoseinyFarahabadyMR,DengS, ZomayaA (2022)Multiscaler: amulti-
loop auto-scaling approach for cloud-based applications. IEEETrans Cloud Comput 10(4):2769–2786

Arabnejad V, Bubendorfer K, Ng B (2019) Dynamic multi-workflow scheduling: a deadline and cost-aware
approach for commercial clouds. Futur Gener Comput Syst 100:98–108

Azad P, Navimipour NJ (2017) An energy-aware task scheduling in the cloud computing using a hybrid
cultural and ant colony optimization algorithm. Int J Cloud Appl Comput(IJCAC) 7(4):20–40

Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey of energy-efficient data centers
and cloud computing systems. Adv Comput 82:47–111

Chen H, Zhu X, Liu G, Pedrycz W (2018) Uncertainty-aware online scheduling for real-time workflows in
cloud service environment. IEEE Trans Serv Comput 14(4):1167–1178

ChengM, Li J, Nazarian S (2018)DRL-cloud: deep reinforcement learning-based resource provisioning and
task scheduling for cloud service providers. In: 2018 23rd Asia and South Pacific design automation
conference. pp. 129–134

Deng F, Lai M, Geng J (2019) Multi-workflow scheduling based on genetic algorithm. In: 2019 IEEE 4th
International conference on cloud computing and big data analysis (ICCCBDA). pp. 300–305. IEEE

Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based dynamic task scheduling for
energy-efficient cloud computing. Futur Gener Comput Syst 108:361–371

GanGN,HuangTL,Gao S (2010)Genetic simulated annealing algorithm for task scheduling based on cloud
computing environment. In: 2010 International conference on intelligent computing and integrated
systems. pp. 60–63. IEEE

Havet A, Schiavoni V, Felber P, Colmant M, Rouvoy R, Fetzer C (2017) Genpack: a generational scheduler
for cloud data centers. In: 2017 IEEE International conference on cloud engineering (IC2E). pp.
95–104

Hu B, Cao Z, Zhou M (2022) Scheduling real-time parallel applications in cloud to minimize energy
consumption. IEEE Trans Cloud Comput 10(1):662–674

Hussain M, Wei LF, Lakhan A, Wali S, Ali S, Hussain A (2021) Energy and performance-efficient task
scheduling in heterogeneous virtualized cloud computing. Sustain Comput: Inf Syst 30:100517

JuveG,ChervenakA,DeelmanE,Bharathi S,MehtaG,VahiK (2013)Characterizing and profiling scientific
workflows. Futur Gener Comput Syst 29(3):682–692

Kang KX, Ding D, Xie HM, Yin Q, Zeng J (2021) Adaptive DRL-based task scheduling for energy-efficient
cloud computing. IEEE Trans Netw Serv Manag 19(4):4948–4961

Katal A, Dahiya S, Choudhury T (2023) Energy efficiency in cloud computing data centers: a survey on
software technologies. Cluster Comput. 26(3):1845–1875

Kaur K, Garg S, Kaddoum G, Ahmed SH, Atiquzzaman M (2020) KEIDS: Kubernetes-based energy and
interference driven scheduler for industrial IOT in edge-cloud ecosystem. IEEE Internet Things J
7(5):4228–4237

Merkel D et al (2014) Docker: lightweight Linux containers for consistent development and deployment.
Linux J 2014(239):2

Shi T, Ma H, Chen G (2018) Energy-aware container consolidation based on PSO in cloud data centers. In:
2018 IEEE Congress on evolutionary computation (CEC). pp. 1–8

Sun Z, Huang H, Li Z, Gu C, Xie R, Qian B (2023) Efficient, economical and energy-saving multi-workflow
scheduling in hybrid cloud. Expert Syst Appl 228:120401

Sun Z, Zhang B, Gu C, Xie R, Qian B, Huang H (2023) ET2FA: a hybrid heuristic algorithm for deadline-
constrained workflow scheduling in cloud. IEEE Trans Serv Comput 16(3):1807–1821

Tan B, Ma H, Mei Y (2019) A hybrid genetic programming hyper-heuristic approach for online two-level
resource allocation in container-based clouds. In: 2019 IEEE Congress on evolutionary computation
(CEC). pp. 2681–2688. IEEE

Third quarter 2021 specpower_ssj2008 results. https://www.spec.org/power_ssj2008/results/res2021q3/
(2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://www.spec.org/power_ssj2008/results/res2021q3/

	Energy-efficient real-time multi-workflow scheduling in container-based cloud
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 Workflow and service instance model
	3.2 Cloud workflow scheduling model

	4 Real-time multi-workflow energy-efficient scheduling algorithm
	4.1 Scheduling architecture
	4.2 Request preprocessor
	4.3 Task pool
	4.4 Re-scheduling trigger
	4.5 Scheduling decision-maker

	5 Performance evaluation
	5.1 Workflow applications and resource environment
	5.2 Comparison algorithm
	5.3 Simulation results
	5.3.1 Arrival rate
	5.3.2 Workflow scale
	5.3.3 Compatibility

	6 Conclusion
	Acknowledgements
	References

