
1

Elastic Scaling of Resources for Energy-efficient
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Abstract—In this paper, we aim to save the total energy
consumption of servers through elastic scaling of CPU resources
in container cloud. To be practical, we propose an online
scheduling method, which consists of three parts: container
placement, vertical scaling and migration. 1) For container
placement, we design an algorithm based on dynamic threshold,
resource balancing and delayed running. When there are PMs
(Physical Machines) turned on, the CPU threshold increases so
that the containers can be placed onto fewest possible PMs.
To make full use of multi-dimensional resources of PM, we
put forward a resource balancing strategy. Since the number
of CPU cores can be scaled dynamically in containers’ run time,
the start time of containers can be delayed without violating
deadlines. 2) For vertical scaling, a collaborative multi-agent
reinforcement learning (MARL) algorithm is proposed to adjust
the container’s CPU, so that the containers on the same PM can
finish simultaneously if possible. Then, the PM can be turned off
to save energy. 3) To further reduce total energy consumption,
we consider migrating the containers from underloaded PMs
and overloaded PMs. Experiment results show the superior
performance of our method to that of the state-of-the-art.

Index Terms—Container cloud, Resources, Energy-efficient,
Elastic scaling, Reinforcement learning.

I. INTRODUCTION

IN recent years, the high energy consumption has become a
major issue faced by cloud data centers. The share of global

data center electricity consumption will increase from 1.15%
in 2016 to 1.86% by 2030, reaching 800TWh (within a margin
of error of ±200TWh) [1]. It has been pointed out that servers
consume 61% of the total energy in a data center, but their
resources are not fully utilized [2]. Due to the growing number
of users and the fluctuating demand for computing resources,
servers are often over-provisioned. That is, servers are in idle
most of the time [3], even in active state, only 20%∼30% of
the resources are used [4], wasting a large amount of energy.
Therefore, optimizing resource scheduling is the key to saving
energy for cloud data center.

In modern cloud system, container has been extensively
used due to its fast deployment feature. Its creation and
destruction can be finished almost instantaneously. A con-
tainer is just like a lightweight virtual machine (VM), so
energy-efficient scheduling and migration is also applicable for
container cloud. Different from VM, container usually shares
the same operating system with its host, so its virtualization
overhead is very low while with high flexibility when scaling
at the run time [5]. Therefore, container can be a better choice
especially for energy-efficient scaling.

For energy saving using elastic scaling of containers, most
recent studies are mainly focused on meta-heuristics to reduce
resource waste [6], [7]. However, these algorithms can not
immediately make the right decisions to the dynamically
changing environment since their modelings are usually too
complex to be solved quickly [8]. Fortunately, reinforcement
learning can well suit to such scenarios. It utilizes intelligent
agents to build knowledge, take actions, and adapt to the
changes of its environment through a load balance between
exploration and exploitation, which can always generate adap-
tive and robust solution for autoscaling problems [9].

In this paper, we aim to save the total energy consumption of
servers through vertical scaling of CPU resources in container
cloud. In each scheduling time slot, there are many user
requests arriving and each is composed of one or more tasks.
Here each task requires a container with specified resources
to complete within deadline. Container placement is an NP-
hard problem considering the multi-dimensional resources.
In fact, more energy can be saved if the containers can be
placed properly while using other energy-saving methods.
Another common energy-saving methods is to migrate all the
containers from underloaded PMs and then turning off the idle
PMs. Finally, we propose an online scheduling method, which
consists of three parts:

1. Container Placement. We propose a container placement
strategy based on dynamic threshold, resource balancing
and delayed running. The higher the threshold, the more
containers can be placed onto the server, but meanwhile
the scaling extent of the running containers is limited
since it depends on the remaining unallocated resource.
When there are PMs turned on, the CPU threshold in-
creases. Otherwise, the threshold will decrease with time.
We also consider balancing different resources of PMs so
as to make full use of the multi-dimensional resources.
There are times when the tasks cannot be processed
immediately after arriving due to limited resources. To
lower down the number of task rejections, we delay the
running of these tasks while speeding up their running
through vertical scaling of the containers so as to meet
their deadlines.

2. Vertical Scaling. In general, an active PM can be turned
off only when all the containers running onside have
finished their tasks. Therefore, vertical scaling is adopted
to adjust the running speed of the containers, so that
the containers on the same PM can finish simultaneously
if possible, and then the PM can be turned off to save
energy. Note that, we regard the problem as a decen-
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tralized partially observable Markov decision progress
and introduce a cooperative multi-agent reinforcement
learning algorithm QMIX [10] to control the vertical
scaling of CPU resources for containers that have been
placed on the same PM.

3. Migration. For underloaded PM, we try to migrate all
the containers onside until it is idle, and then turn off
the PM to save energy. For overloaded PM, we try to
reduce the high utilization of CPU through migrating the
containers since the power of a PM is greatly affected
by its CPU utilization. In this way, the scaling range of
CPU will also be extended, making it more flexible for
vertical scaling.

Specifically, the main contributions of our work can be
summarized as follows:

• Considering the vertical scaling feature of container, we
propose a multi-agent reinforcement learning (MARL)
algorithm to dynamically adjust the CPU resources of
the containers in the granularity of time slot, so that the
total energy consumption of the servers can be minimized
while satisfying the deadline requirements of the tasks as
much as possible.

• We propose a new container placement algorithm that can
accommodate as many containers as possible with fewest
PMs using dynamic threshold. The ingenuity of the
design of our vertical scaling lies in: 1) it can accelerate
the running speed of the containers with delayed tasks to
meet the deadlines so as to reduce the number of task
rejections; 2) it can adjust the speed of the containers on
the same PM to end the containers simultaneously, so that
the PM can be turned off to save energy. We try to con-
solidate containers and flexibly adjust the scaling range of
CPU resources through migration for underloaded PMs
and overloaded PMs, respectively.

• Our method is evaluated with simulated data based on the
real-world trace on various metrics. Experiment results
show that our method has superior performance to the
state-of-the-art methods.

The remainder of this paper is organized as follows. Section
2 summarizes related work. Section 3 gives the formulation
of the problem in detail. Section 4 presents the design of our
algorithm. In Section 5, the experimental setup is described
and the results are analyzed. Section 6 concludes the whole
paper.

II. RELATE WORK

There has been extensive research on energy saving for
cloud data centers, which can be classfied into two categories:
resource management and lifecycle management.

A. Resource Management

For resource management, the existing research can be clas-
sified into static resource management and dynamic resource
management.

1) Static Resource Management: According to user re-
quests, cloud data center usually place containers or VMs onto
proper PMs to make full use of the resources. Container or
VM placement can be regarded as a multi-dimensional bin
packing problem, which is an NP-hard problem [11].

CPU and memory (Mem) are the main resources considered
in most placement problems in cloud computing. Lin et al.
[12] additionally considered bandwidth resource, and proposed
a nonlinear programming model to solve the divisible task-
scheduling problem. Azizi et al. [13] proposed a balancing
strategy for CPU and Mem, so that both resources on the
PM can be fully utilized and more requests can be processed.
This strategy can be extended for three or more resources.
EL-Taani et al. [14] proposed a statistical-based method to
measure the similarity between PM and VM resources (CPU,
Mem, bandwidth), based on which to reduce resource wasting
in VM placement. Elsakhawy et al. [15] predicted the PM
resource gap caused by VM release and then filled it with a
new VM, so that the resource can keep in use. Both Karmakar
et al. [16] and Hu et al. [17] used ACO-based algorithms
to solve VM and container placement problems respectively,
with the goal of saving energy and reducing communication
costs. Zhou et al. [18] and Patel et al. [19] used undirected
graphs to represent the communication between containers
and the network topology of PMs. The former uses graph
segmentation algorithms, while the latter uses graph multi-
coloring methods, ultimately reducing communication costs
and energy consumption. Benefiting from the development of
AI, some recent researches [20]–[23] used various reinforce-
ment learning to solve the placement problem.

However, static resource management mainly focuses on
the initial placement of VMs or containers, which usually
will be conducted at the beginning of each scheduling period.
Different from the existing work, our algorithm achieves the
delayed placement of containers. Containers that cannot be
placed in current time slot will be delayed to the next time
slot (at most once) so as to avoid turning on new PM. In spite
of this, the deadlines of the containers can still be satisfied
through vertical scaling of the CPU resources.

2) Dynamic Resource Management: To cope with the fluc-
tuating demand, data centers often reserve resources which
may lead to resource waste. Dynamic resource management
adjusts the resources of the running containers or VMs to
reduce waste.

Song et al. [24] proposed a two-layer on-demand resource
provisioning method based on thresholds and feedback. The
feedback mechanism will dynamically adjust the threshold.
Guo et al. [25] proposed a shadow routing-based approach,
which achieved horizontal scaling by dynamically adjusting
the number of VMs. In literature [26], [27], the authors
proposed a reactive-based vertical scaling algorithm, and ex-
periments proved that it can reduce the resource waste of the
PMs in container cloud. Zhang et al. [28] believed that the
reactive auto-scaling strategy does not respond quickly, so
they proposed a proactive method using ARIMA to predict
the number of user requests and SARSA to make the scaling
decisions. Rossi et al. [29] combined vertical and horizontal
scaling and proposed a dynamic Q-learning algorithm, enhanc-
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ing the resource utilization compared with that using only one
scaling method. For microservice application, Xu et al. [30]
proposed a multi-faceted scaling approach that combine the
horizontal scaling, vertical scaling, and brownout to decreases
response time and connection time of services. Song et al.
[31] proposed ChainsFormer to dynamically adjust resource
allocation for microservice. By combining deep learning and
reinforcement learning, they optimizes resource usage while
maintaining high-quality of service.

Elastic scaling is more common for containers. However,
the purpose of elastic scaling in the existing works is more
concerned with adjusting the resources on demand, rather than
saving energy directly.

B. Life Cycle Management

Life cycle management in cloud refers to changing the
state of PM (on state, off state and sleep state) and that
of VM/container (creating, destroying and migrating). As a
typical life cycle management technique, VM/container con-
solidation always migrates a certain instances onto fewer PMs
and then shuts down or sleep the idle ones.

Li et al. [32] used a coefficient of variation metric called
CV to reflect the load balancing degree of server resources
in container consolidation. Mongia et al. [33] proposed an
adaptive threshold technique for migration, which dynamically
adjusted the threshold according to the past CPU utilization
of the PM. Considering the migration cost in terms of energy
consumption. Khan et al. [34] argued that migration should
be triggered only if migration cost can be recovered. Shen
et al. [35] considered that each resource on the PM may be
overloaded, so they proposed a multi-criteria decision-making
method to select the container to be migrated and destination
PM. Haghshenas et al. [36] first used MARL to determine
which state a PM should be in through migrating the VMs
according to the state of the PM, and the PM will finally
be transited to this state. However, these works ignore the
switching delay and power of servers.

Different from the existing work, our method involves
container placement, vertical scaling and migration, which are
interrelated and work cooperatively to achieve the energy-
saving goal.

III. PROBLEM FORMULATION

In this section, mathematical models and problem formu-
lation are described in detail. Table.I lists the notations and
definitions to be used in this section.

A. Data Center Model

In our model, it is assumed that there are N homogeneous
PMs in total. The hardware resources of each PM can be
denoted as follows:

PMi = (Ci,Mi, Bi), (1)

where i denotes the index of the PM, Ci, Mi and Bi denote
the total CPU, Mem and bandwidth resources owned by this
PM, respectively.

In real data center, the PMs may be divided into clusters
and the PMs can only communicate with those in the same
cluster. PMs can communicate with each other only if they
are connected in the network. We use ζij to denote whether
there is connection between PMi and PMj as follows:

ζij =

{
1 if PMi can communicate with PMj

0 otherwise
(2)

Note that, a PM may be connected with more than one
PM, and each connection will take up a portion of the total
bandwidth of each PM.

B. User Request Model

We consider a series of batch requests submitted by users.
These requests come in the form of jobs, each is composed
of tasks, and each task needs a container to process. It can be
denoted as follows:

Jobm =< D1, D2, .., Dk, ., DK >, (3)

where m is the job index, K is the total number of tasks in the
job, and Dk represents the container for the kth task. Here we
only consider the parallel running tasks belonging to the same
job and there are no topology dependencies among them.

The resource requirement of a task will finally be trans-
formed to the requirement of a container running this task.
Therefore, we can denote the resource requirement of a
container as follows:

Dk = (Ck(r),Mk(r), Bk(r)), (4)

where Ck(r), Mk(r) and Bk(r) denote the CPU, Mem and
bandwidth resources required by container Dk, respectively.

We assume jobs are independent of each other with no com-
munication, while the tasks in the same job may communicate
with each other through container. We use ξ to denote the
communication relationship among the containers as follows:

ξklm =

{
1 if Dk and Dl in Jobm have communication
0 otherwise

(5)
Fig.1 is an example describing the communication relation-

ships among the containers belonging to the same job using
undirected graph. In this figure, there are 5 vertices, represent-
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Fig. 1. An example of a job represented using undirected graph.

ing 5 containers in the job. The vertices are connected when
the two containers have communications with each other, and
the weight on the edge represents the bandwidth requirement
of the communication. The bandwidth of a container is the
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TABLE I
OVERVIEW OF THE USED NOTATION.*

Notation Definition Notation Definition

Dk kth container in job Lk Number of instructions of Dk

Jobm mth user request Fk(r) Requested finish time of Dk

PMi ith PM Ci Total CPU resources owned by PMi

N Number of PM in data center Ck(r) Requested CPU resources by Dk

N t
i (c) Number of containers on PMi at time slot t Ct

k(a) Actual CPU resource allocated to Ck at time slot t
N t

on Number of PM in on state at time slot t Mi Total Mem resources owned by PMi

N t
off Number of PM in off state at time slot t Mk(r) Requested Mem resources by Dk

N t
on→off Number of PM in on→ off transition state at time slot t M t

k(a) Actual Mem resource allocated to Ck at time slot t
N t

off→on Number of PM in off → on transition state at time slot t Bi Total bandwidth resources owned by PMi

E Total energy consumption of data center Bk(r) Requested of bandwidth resources by Dk

P t
i Total power of PMi at time slot t Bt

k(a) Actual bandwidth resource allocated to Ck at time slot t
P t
i (cpu) Power of CPU in PMi ζij Communication link between PMi and PMj

P t
i (mem) Power of Mem in PMi ξklm Communication between Dk and Dl

P t
i (net) Power of bandwidth in PMi DLm Deadline for Jobm

P t
i (d) Dynamic power of PMi T Total number of time slots

P t
i (s) Static power of PMi ι Time of each time slot

Pon→off Transition power for turn off ιon→off Transition delay for turn off
Poff→on Transition power for turn on ιoff→on Transition delay for turn on

* i and j are index for PM; k and l are index for container; m is index for job; t is index for time slot;
r and a denote the resources requested and allocated for container, respectively.

sum of the weights of all the edges connected to it. Note
that, the bandwidth utilization of a PMs depends on container
placement. For two containers placed on the same PM, the
communications between them will not consume any band-
width of this PM. The two containers with communications
between each other can be placed on different PMs if the two
PMs are connected with enough bandwidth.

Considering the time characteristics of the container such as
start time and finish time, a container Dk can be represented
by the tuple as follows:

Dk = (Ck(r),Mk(r), Bk(r), Sk(r), Fk(r), Lk). (6)

In this tuple, Sk(r) denotes the default start time of container
k, which equals to the arrival time of the job. It can be adjusted
through delayed running when the resource requirement of this
container can not be met in current time slot. Lk denotes the
number of instructions to be executed by this container, which
can be calculated in advance [20], [37]. Fk(r) denotes the
expected finish time of the container, which can be changed
through vertical scaling of its CPU resource. The execution
time of a container can be estimated given the number of
instructions and the average CPU speed (instructions per
second) [20]. Each user request is a job composed of tasks with
different resource requirements, but having the same deadline
DLm. The speed of the containers for these tasks can be scaled
separately as long as the finish times of these containers do
not exceed DLm.

C. Power Consumption Model

In general, a PM will transit between three states: on state,
off state and sleep state. The power consumption of the PM in
off state is lower than that in sleep state, but taking more time
to wake up. Most studies choose the sleep state (rather than off
state) as main energy-saving state to trade off between energy
saving and QoS (Quality of Service). However, it proved
that off state can save more energy in our work, meanwhile
the delay of turning up can be compensated by the vertical
scaling (more detail in Section 5.3.3). Therefore, we consider

the following four states for PM: on state, off state, on→off
transition state and off→on transition state. Note that, the
server power is almost 0 when turned off, and the part of
the energy consumed by the server after turned on within
current time slot can not be ignored. Thus, the total energy
consumption of data center can be represented as follows:

E =

T∑
t=1

( Nt
on∑

i=1

P t
i ∗ ι+

Nt
on→off∑
i=1

Pon→off ∗ ιon→off (7)

+

Nt
off→on∑
i=1

Poff→on ∗ ιoff→on

+

Nt
off→on∑
i=1

P t
i ∗ (ι− ιoff→on)

)
,

where T and N are the total number of time slots and PMs in
the data center, respectively. P t

i is the power of PMi in the tth
time slot, and ι is the size of a time slot. N t

on, N t
off , N t

on→off

and N t
off→on are the number of physical machines in the

above four states in time slot t, respectively. Pon→off and
ιon→off denote the transition power and delay when turning
off a PM, while Poff→on and ιoff→on denote the transition
power and delay when turning on a PM. We assume that the
transition delay of a PM is smaller than a time slot, and it
is conducted at the beginning of each time slot so that the
transition will not cross two adjacent time slots.

For a running PM, its power consumption consists of
dynamic power and static power, denoted as P t

i (d) and P t
i (s),

respectively. Thus, we have:

P t
i = P t

i (d) + P t
i (s). (8)

The dynamic power depends on the utilization of hardware
components such as CPU, Mem and network, which account
for about 66% of the total PM power [38]. As in literature
[39], it can be modeled as follows:

P t
i (d) = P t

i (cpu) + P t
i (mem) + P t

i (net), (9)

where P t
i (cpu), P

t
i (mem) and P t

i (net) are the power of CPU,
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Mem and bandwidth, respectively. P t
cpu can be represented as

a quadratic model, while P t
mem and P t

net can be represented
as linear models [40], so we have:

P t
i (cpu) = α1µ

t
i(cpu) + α2(µ

t
i(cpu))

2

P t
i (mem) = βµt

i(mem)

P t
i (net) = γµt

i(net)

(10)

where µt
i(cpu), µ

t
i(mem) and µt

i(net) denote the utilization
of CPU, Mem and bandwidth of PMi, respectively. α1, α2,
β and γ are the weights of the models.

D. Problem Formulation

In this paper, we try to minimize the total energy con-
sumption of servers (denoted by E, which is calculated by
equation(7)) , the number of container deadline violation (de-
noted by CDV , which is obtained by statistics) and rejection
(denoted by CR, which is obtained by statistics) through
elastic scaling of the resources of the containers that execute
the tasks of user requests. Based on the models described
above, our problem can be formulated as follows:

F (f1, f2, f3) =


min f1 = E

min f2 = CDV

min f2 = CR

(11)

Subject to:

N t
on +N t

off +N t
on→off +N t

off→on = N (12)

Ci ≥
Nt

i (c)∑
k=1

Ct
k(a),∀i ∈ {1, ..., N} (13)

Mi ≥
Nt

i (c)∑
k=1

M t
k(a),∀i ∈ {1, ..., N} (14)

Bi ≥
Nt

i (c)∑
k=1

Bt
k(a),∀i ∈ {i, ..., N} (15)

ζij = 1 if Dk ∈ PMi && Dl ∈ PMj && ξklm = 1 (16)

The constraint (12) means that the sum of the PMs in different
states should be equal to the total number of PMs. The con-
straint (13)∼(15) means that the resources of all the containers
in the same PM should not exceed the capacity of this PM. We
use Ct

k(a), M
t
k(a) and Bt

k(a) to denote the actual CPU, Mem
and bandwidth resources allocated to the container in time
slot t. The constraint (16) ensures that two communicating
containers are either on the same PM (i = j) or two PMs
(i ̸= j) with connection.

Our scheduling is made in the granularity of time slot, and
we determine:

• which containers should be placed onto which PMs;
• how many CPUs should be actually allocated to each

containers in each time slot;
• when to trigger the migration and which containers

should be migrated onto which PMs.

IV. ALGORITHM DESIGN

The architecture of our scheduling system consists of three
parts: container placement, vertical scaling and migration, as
shown in Fig. 2. Users submit their requests in the form of
jobs, which will first be translated into the containers to run the
tasks in each job, and then the connected ones will be bound
into placement unit through Job Processing Module. The
Placement Module will determine which PMs the placement
unit should be deployed onto. When the containers are running
on the PMs, their CPU resources can be scaled dynamically
by multi-agents in cooperation. To achieve energy-saving goal,
the PM State Management Module will collect the states of
all the PMs and the containers, so as to determine whether to
turn on or off a PM. The information will also be used by
Container Migration Module to determine which containers
should be migrated onto which PM to save energy.

User

User

User

1Job

2Job

mJob

Job Processing 

Module

Placement 

Module

Agent 1 Agent n

1PM

control control

NPM

PM State Management 

Module

Container Migration 

Module

1.Container Placement

2. Vertical Scaling

3.Migration

Container Container

PM State PM State

Agent 1 Agent n

control control

Container Container

Placement Units

Fig. 2. The architecture of our scheduling system.

The algorithm execution process is shown in Fig.3. The
container placement, scaling and migration algorithms are the
three steps in our energy saving scheduling, and each makes
different decisions independently. The decisions are made at
the beginning of each time slot for placement and scaling,
while at the end of each time slot for migration. The details
of the algorithms for these three parts will be given in the
following.

Container 

Migration

Container

Running

Container Placement 

and

Vertical Scaling

Container 

Migration

Container

Running

T

ι ι 

Time

Container Placement 

and

Vertical Scaling

Fig. 3. Algorithm execution process
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A. Container Placement
To finish a job, we need to allocate resources for each task in

the job while considering the communications among different
tasks, which can be processed through Job Processing Module
and Container Placement Module, respectively.

1) Job Processing Module: When user requests arrive, the
Job Processing Module will first translate each task in one job
into the resource requirements of each container. Considering
the communications between the containers, we preferentially
place them on the same PM if possible. Therefore, the con-
tainers with communication with each other will first be bound
together as a placement unit, which will then be deployed onto
PMs by Placement Module. If a placement unit is too large
to be placed directly onto any running PM, the containers in
this units will be split and placed separately.

Algorithm 1: Job Processing
Input : jobs: the set of user requests arriving in

current time slot.
Output: placeUnits: the set of placement units.

1 placeUnits← ∅;
2 foreach job ∈ jobs do
3 jobGraph← CreateGraph(job);
4 conGraphs←

GetConnectedGraph(jobGraph);
5 foreach connectGraph in conGraphs do
6 placeUnit ← ∅ ;
7 foreach container in connectGraph do
8 Add container into placeUnit;

9 Add placeUnit into placeUnits;

10 return placeUnits;

Algorithm 1 describes the process of the Job Processing
Module. In this algorithm, the initialization is made in (Line1).
Each job can be represented by an undirected graph, so we
can obtain all the connected sub-graphs from user requests
(Line3 ∼ Line4). The containers in one connected sub-
graph will then be bound together into a placement unit
(Line6 ∼ Line8). All the placement units will be added into
a set called placeUnits as the final output of this algorithm
(Line9 ∼ Line10).

2) Placement Module: As given in equations (9) and (10),
the power consumption of a server is in quadratic relation with
its CPU utilization. When more containers are placed on a
PM, the total energy consumption will increase dramatically.
To reduce the sharply increase of energy consumption, we
can lower down the CPU utilization through placing fewer
containers on the PM. However, it also leads to an increase
of static energy because we need more PMs to run these
containers.

Therefore, we propose a dynamic threshold method to
trade off the above two situations. The threshold divides the
utilization of the CPU resource of a PM into two parts:

• Static CPU Resource: It refers to the available CPU
resources that can be allocated to the containers at place-
ment time but not exceeding the utilization threshold.

• Dynamic CPU Resource: It refers to the available CPU
resources not yet allocated to the containers at placement
time, but can be scaled at run time.

As in literature [18], our threshold of CPU utilization will be
adjusted dynamically in range [80%, 100%]. The threshold
will increase when there are PMs turned on, otherwise it will
decrease with time but should not below 80%.

In order to make full use of multi-dimensional resources
when placing containers on the PMs, we propose a resource
balancing method to balance the utilization of different re-
sources of a PM using balancing degree BDt

i , which can be
calculated as follows:

BDt
i =

µt
i(mem)

µt
i(cpu)

, (17)

where µt
i(mem) and µt

i(cpu) are the Mem and CPU utilization
of PMi in time slot t, respectively. The closer the BD is to
1, the more balancing this PM is. Therefore, we always select
the PM with best BD after placing the container on it.

Since the number of CPU cores can be scaled dynamically
to speed up the running of the container, its start time can
be delayed without violating deadline. That is, the delayed
running can be compensated through vertical scaling.

Algorithm 2 shows the details of container placement, which
consists of three key methods such as dynamic threshold,
resource balancing and delayed running.

1. The threshold θ is dynamically adjusted so as to control
the maximum available resources that can be allocated
to the containers at placement time. It decreases (the
decrement is denoted as ∆θ1) slowly with time but should
not below the lower bound 80% (Line1). It will increase
(the increment is denoted as ∆θ2) when there is any
PM turned on so as to accommodate more containers,
but should not exceed the upper bound 100% (Line8 ∼
Line9, Line16 ∼ Line17, Line28 ∼ Line29).

2. In each time slot, we try to allocate the placement
units onto the PMs in previous time slot (denoted as
delayedP laceUnits) and that in current time slot (de-
noted as placeUnits), as shown in (Line3 ∼ Line21)
and (Line22 ∼ Line31), respectively. We select a PM
from all the servers for a placement unit or a container.
If the selected PM is active, make the placement; or turn
on a new PM and make placement. Note that, in the
second case, the placement unit or container will actually
be started in the next time slot considering the transition
delay of turning on a new PM.
When there are not enough remaining resources in all the
PMs, there are two cases:

– For placeUnit ∈ delayedP laceUnits, the place-
ment of all the containers in placeUnit will be
cancelled. That is, the user request corresponding
to placeUnit will be rejected, and the number
of rejected containers will be counted (Line19 ∼
Line20).

– For placeUnit ∈ placeUnits, the placeUnit is
added to delayedP laceUnits to be allocated in the
next time slot (Line31), the deadlines of which can
be compensated through vertical scaling of CPU.
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Algorithm 2: Container Placement
Input : θ: the dynamic threshold;

placeUnits: the set of placement units;
delayedP laceUnits: the set of placement
units that was delayed in previous time slot.

Output: θ: the dynamic threshold;
rejectNum: the number of containers that
could not be placed;
delayedP laceUnits: the set of placement units
that can not be placed in current time slot.

1 if θ −∆θ1 ≥ 80% then θ = θ −∆θ1;
2 rejectNum← 0;
3 foreach placeUnit ∈ delayedPlaceUnits do
4 PM ← PMSelection(placeUnit, θ);
5 if PM ̸= null && PM ∈ activePMs then
6 Place all containers in placeUnit onto PM ;
7 else if PM ̸= null && PM /∈ activePMs then
8 Turn on a PM and place all containers in

placeUnit onto PM ;
9 if θ +∆θ2 ≤ 100% then θ ← θ +∆θ2;

10 else
11 foreach container ∈ placeUnit do
12 PM ← PMSelection(container, θ);
13 if PM ̸= null && PM ∈ activePMs then
14 Place container in PM ;
15 else if PM ̸= null && PM /∈ activePMs

then
16 Turn on a PM and placecontainer

onto PM ;
17 if θ +∆θ2 ≤ 100% then θ ← θ +∆θ2;
18 else
19 Cancel the placement of all containers

in placeUnit;
20 rejectNum ← rejectNum + |placeUnit|;
21 break;

22 delayedP laceUnits← ∅;
23 foreach placeUnit ∈ placeUnits do
24 PM ← PMSelection(placeUnit, θ);
25 if PM ̸= null && PM ∈ activePMs then
26 Place all containers in placeUnit onto PM ;
27 else if PM ̸= null && PM /∈ activePMs then
28 Turn on the PM and place all containers in

placeUnit onto PM ;
29 if θ +∆θ2 ≤ 100% then θ ← θ +∆θ2;
30 else
31 Add placeUnit to delayedP laceUnits;

32 return θ, rejectNum, delayedP laceUnits;

Note that, PMSelection will always select a PM for all
the containers in a placement unit or a single container
based on the balancing degree as mentioned above.

3. Finally, we output the dynamic threshold, the total energy
consumption of all the servers in current time slot, the
updated number of the rejected containers and the set of

delayed placement units to be allocated in the next time
slot.

B. Vertical Scaling

When all containers have been placed on the PMs, we can
scale the CPU resources for each container for energy saving.
If we assign an agent to control the scaling of CPU resources
for each container, there can be one or more agents running
on a PM to allocate the remaining resources in a sharing
way. Thus, the whole scheduling process can be regarded as
a decentralized partially observable Markov decision progress
(Dec-POMDP) [41]. These agents need to observe the envi-
ronment and perform actions, which will in turn change the
environment. The changes of the environment and observation
can be established into transition models based on Markov
decision process and partial observation models, respectively.

The Dec-POMDP can be defined formally as a tuple U =
{D,S,O,A, T,R, n, γ}, where:

• D is the set of n agents.
• S = {s1, ..., st, ...} is a (finite) set of environment states.

st denotes the environment state in time slot t.
• O = ×i∈DOi is the set of joint observations for all agents.

Here, Oi is the set of observations available to agent i.
• A = ×i∈DAi is the set of joint actions for all agents, and

Ai is the set of actions available to agent i.
• T : S × A → S is the state transition function.

T (st+1|st, at) denotes transition to a new state st+1 after
taking action at in state st.

• R : S× A→ R is the reward function. It maps the state
and joint action to a real number, meaning that a reward
value can be obtained after taking the joint action under
a certain environment state.

• γ ∈ [0, 1) is a discount factor used to calculate the
cumulative reward Rt =

∑t
j=1 γ

j−1rj .

In each time slot t, each agent will observe the environment
st and perform a action at based on a specific policy π, leading
to one joint observations ottot =< ot1, ..., o

t
n > and one joint

action attot =< at1, ..., a
t
n >. How this action influences the

environment is described by the transition function T . The
next state of the environment is only determined by the current
state and the action to be taken. is used to specify the goal
of the agents. The rewards represent the benefits that can be
achieved by transiting the state from st to st+1, which can is
used to specify the goal of the agents. The objective of RL is
to maximize the cumulative reward Rt by optimizing policy.
Some RL-based approach is based the action value function
called Q function to estimate the expected cumulative reward
of state with action under policy π, which can be updated as:

Q(st, a
t)← Q(st, a

t) (18)
+α[R(st, a

t) + γ max
a′

Q(st+1, a
′)−Q(st, a

t)]

where α ∈ (0, 1] is the learning rate.

Specifically, in our scenario, the environment is defined as
a PM with containers running onside, each controlled by an
agent. The agents on different PMs are independent of each
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other in the data center. Let oti denote the observations of agent
i in time slot t, it can be denoted as follows:

oti = [CPU,CPUavail, L
t
i, Ci(r), L

t
1, C1(r), ...,

Lt
i−1, Ci−1(r), L

t
i+1, Ci+1(r), .., L

t
n, Cn(r)] (19)

where CPU and CPUavail are respectively the total CPU
resources and available CPU resources of the PM running the
container. Li is the number of remaining instructions to be
executed and Ci is the initial requested CPU resources for
agent i, and n is the total number of agents on this PM.

In each PM, the available action set A for all agents may
change in each scheduling, which depends on two factors:
1) the number of the allocated CPUs that exceed the initial
demand of each container, which affects the decreasing action
of the CPU cores for each agent. 2) the total number of the un-
allocated CPUs in the PM, which affects the actions to increase
CPU cores for all agents. We use a ϵ−greedy method π(o, a)
to control the action selection process of an agent, as shown
in the following:

π(oti) =

argmax
a

Q(oti, a) if δ > ϵ

random action from Ai otherwise
(20)

where δ is a uniform random number that can be used to
balance the exploration and exploitation. ϵ ∈ [0, 1) is the
probability to choose a random action for agent.

For a running container, its CPU resources can be increased
or decreased dynamically, making it hard to judge whether the
scaling operations save energy or not. The energy saved can
be counted only when all the containers onside have finished
their task and the PM is immediately shut down after that. In
our scheduling system, the reward is designed considering the
amount of energy saved and deadline violations as follows:

r=


V∆E if all containers on PM are finished & ∆E > 0

∆E if all containers on PM are finished & ∆E ≤ 0

0 otherwise
(21)

where ∆E = Eorigin − Enew. Eorigin is the energy con-
sumption of the PM to run all the containers from beginning
to ending with no energy-saving operations, and Enew is the
energy consumption with elastic scaling. V is the proportion
of containers that do not violate their deadlines. When all
the containers on the PM are finished and ∆E > 0, we
get a positive reward. The reward is larger if the proportion
of deadline violations is low. Else when ∆E < 0, we get
a negative reward, which will guide the adjusting of the
parameters for energy saving. When there is any container
running on the PM, we can not count the energy saved, so the
reward is 0 in such a time slot.

The vertical scaling of all the containers in a PM is
controlled based on QMIX [10]. As shown in Fig. 4, the
working principle of QMIX is to use the Agent Networks
and Mixing Network to approximate the action-value and joint
action-value function. In each time slot t, each agent has
its own Agent Network that determines the action to be taken
based on the observation oti and the action at−1

i . All the agents
are running cooperatively on a PM to achieve the energy-

Mixing Network

Agent 1 Agent i

Environment

Decentralized Agent 

n n n

tQ τ( ,a )

Observation Action

GRU

MLP

MLP

Agent 

Network π

Container

Agent n

Observation Action

Container

Observation Action

Container

i

t
, i

t-1(o a )

1 i 1

tQ τ( ,a ) i i i

tQ τ( ,a )

i i i

tQ τ( ,a )
tot tot

tQ (τ,a )

st

Fig. 4. The structure of QMIX.

saving goal, and we use a Mixing Network to evaluate the
actions of these agents.

Let Qi(τi, a
t
i) denote the action-value function of agent i,

where τi is action-observation history for agent i. The joint
action-value function is denoted as Qtot(τ, a

t
tot), where τ is

the joint action-observation history. In QMIX, each network
(including Mixing network and Agent Network) has two sets
of parameters denoted as Θ and Θ′, respectively. The network
using Θ parameter is called eval network, which is used to
calculate the Q value of the actually performed action at the
current state. The network using Θ′ parameter is called target
network, which is used to calculate the Q value of the best
action at the next state. It can also be used to calculate the real
Q value (denoted as ytot) in conjunction with reward to train
the eval network. Therefore, Agent Network can further be
classified into eval Agent Network and target Agent Network,
and Mixing Network can further be classified into eval Mixing
Network and target Mixing Network.

Algorithm 3 gives the details of our QMIX. The replay
buffer and environment are initialized (Line1, Line3). Note
that, the replay buffer is used to save the history record
(ottot, o

t+1
tot , st, st+1, a

t
tot, r) during exploration (Line15). In

fact, target network and eval network share the same network
structure, but the parameter Θ′ of target network will be
synchronized with the parameter Θ of eval network every 200
episodes (Line4 ∼ Line5). At the beginning of each time
slot, each agent will get an observation and take an action to
determine how many CPU cores the container should get in
the current time slot (Line8 ∼ Line11). Based on the joint
observations and actions, the environment will be changed and
the reward will be calculated (Line12 ∼ Line14). When the
number of records in the buffer exceeds BatchSize, randomly
select a batch of records from the buffer to train the eval Net-
work through gradient descend method (Line17 ∼ Line24)
based on the outputs from eval Agent Networks, target Agent
Networks, eval Mixing Networks and target Mixing Networks
(Line19 ∼ Line22).
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Algorithm 3: QMIX Algorithm

1 Initialize replay buffer buffer;
2 for episode ← 1 to M do
3 Initialize environment s;
4 if episode % 200 == 0 then
5 Update target network based on eval network;

6 t← 1;
7 while the PM is active in time slot t do
8 st ← Get environment state;
9 foreach agenti ∈ PM do

10 oti ← Observe current state;
11 ati ← Select action by π(oti, a

t−1
i );

12 ottot ← [ot1, ...., o
t
n];

13 attot ← [at1, ...., a
t
n];

14 Execute attot to get new state st+1 and
calculate reward r;

15 Store (ottot, o
t+1
tot , st, st+1, a

t
tot, r) to buffer;

16 t← t+ 1;

17 if buffer.size > batchSize then
18 Randomly extract a batch from buffer;
19 Calculate each Qi(τi, ai; Θi) by inputting

(oti, a
t−1
i ) into eval Agent Network;

20 Calculate each max
a′
i

Qi(τ
′
i , a

′
i; Θ

′
i) by inputting

(oti, a
t−1
i ) into target Agent Network;

21 Calculate Qtot(τ, atot, s; Θ) by inputting
< Q1(τ1, a1; Θ1), ..., Qn(τn, an; Θn), s >
into eval Mixing Network;

22 Calculate Qtot(τ
′, a′tot, s

′; Θ′) by inputting <
max
a′
i

Q1(τ
′
1, a

′
1; Θ

′
1), ...,max

a′
n

Qn(τ
′
n, a

′
n; Θ

′
n), s

′ >

into target Mixing Network;

23 Set: ytot = r + γ max
a′
tot

Qtot(τ
′, a′tot, s

′; Θ′);

24 Perform a gradient descend step on:

L(Θ) =
∑b

i=1[(y
tot
i −Qtot(τ, atot, s; Θ))2];

C. Migration

To further reduce the energy consumption of PMs, we try to
consolidate the containers onto fewer PMs through migration,
as shown in Algorithm 4. Migration is always triggered at
the end of each time slot when there is any PM overloaded
(CPU utilization exceeds the threshold θover) or underloaded
(CPU utilization below the threshold θunder). For overloaded
PM, we always select the container from the PM with best
balance degree BD after migrating the container (Line4).
All candidate destination PMs should meet two conditions:
1) it is not overloaded or underloaded; 2) it will not be
overloaded after migration. Then, we select the destination
PM PMdes with best BD after migrating the container onto it
(Line5, Line11). The container migration from the overloaded
PM continues until its CPU utilization is no longer higher than
θover (Line3 ∼ Line8).

For underloaded PM, we try to migrate all the containers
onside (Line9 ∼ Line16) until it is idle, and then turn off

Algorithm 4: Container Migration
Input : θover: the dynamic threshold for

overloaded;
θunder: the dynamic threshold for
underloaded;

Output: E: the energy consumption of all the
servers;

1 foreach PMi ∈ activePMs do
2 containerSet← all containers in PMi;
3 while µi(cpu) ≥ θover&&containerSet ̸= ∅ do
4 container ←ContainerSelection(containerSet);
5 PMdes ← DesPMSelection(container);
6 if PMdes ̸= null then
7 Migrate the container onto PMdes;

8 containerSet←
containerSet \ {container};

9 if µi(cpu) ≤ θunder then
10 foreach container ∈ PMi do
11 PMdes ←

DesPMSelection(container);
12 if PMdes ̸= null then
13 Migrate the container onto PMdes;
14 else
15 Cancel all the migrations of the

containers on PMi;
16 break;

17 if PMi is idle then
18 Turn off PMi;

19 E ← CalEnergy();
20 return E

the PM to save energy (Line17 ∼ Line18). If there is any
container that can’t be migrated, we cancel all the migration
decisions for this underloaded PM. Note that, the migration
cost can’t be ignored, which usually causes an increase of 10%
running time for the remaining instructions to be executed by
this container using the initially requested CPU resources [34].

V. PERFORMANCE EVALUATION

A. Experiment Setup

In our simulation, the data is generated based on the analysis
of real data sets (Alibaba 2017&2018 [42]) and the literature
of data statistics [35], [43], as shown in Table.II. In our
scheduling, the size of each time slot is 30 seconds. We assume
all the PMs are homogeneous, each with 68 logical CPU cores,
68 GB memory and bandwidth capacity is 100M. The power
and delay of the homogeneous PMs in different states are listed
in Table.III [44], [45]. For container placement, the threshold
of CPU utilization is dynamically adjusted with decrement
∆θ1=1% and increment ∆θ2=5%, respectively. For container
migration, the overloaded and underloaded thresholds are 80%
and 30%, respectively.
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TABLE II
GENERATION METHOD OF SIMULATION DATA

Data Generation Method

Communication situation Random graph G(n, p=0.3)
Number of jobs in each time slot Exponential distribution (λ=0.2)
Number of tasks in job Burr distribution (c=5.95, d=0.17)
CPU and Mem requested by container Statistical probability distribution
Brandwidth requested by container Zip distribution (a=2)
Container runtime Negative binomial distribution (p=0.027, loc=167)

TABLE III
POWER AND DELAY FOR PM IN DIFFERENT STATES

State Power(W) Delay(s)

off 0 -
sleep 102 -
on → sleep 100 9
sleep → on 138 6
on → off 21 10
off → on 55 30

TABLE IV
SIMULATED DATA OF DIFFERENT SCALES

Number of Jobs Number of PMs

Scale 1 100 25
Scale 2 500 100
Scale 3 5000 500

To test the performance of different placement algorithms,
we designed three scales of traces in experiment, as shown in
Table.IV. In each scale, there are two traces generated based on
Alibaba 2017&2018 analysis. Thus, there are totally 6 request
traces named trace1 ∼ trace6.

B. Compared Approaches

When there are new requests arriving in each time slot,
new containers will be placed on the PMs to run each task of
the requests. To evaluate different energy-saving methods, we
first select a placement algorithm for each method. Here are
the most commonly used placement methods:

• FCFS (First Come First Served) Algorithm: As a classical
algorithm, it always places the containers on the PMs with
sufficient resources one by one according to their arriving
order.

• Balance Algorithm [13]: To fully utilize multi-
dimensional resources of the PM, this algorithm always
selects the PM for the container that still satisfies the
balancing conditions after placement.

• Two-sided Matching Algorithm [46]: This algorithm cal-
culates VM-to-PM and PM-to-VM satisfaction degrees
according to different placement preference rules. The
VMs will finally be placed on the PMs based on the two
satisfaction degrees, which can easily be extended for
container placement.

When all containers have been placed on the PMs, the
energy-saving methods will be taken. Here are the most
commonly used methods including classical and state-of-the-
art algorithms:

• RR-Scaling: Round Robin (RR) is a classical strategy that
allocates all the remaining CPUs of the PM to a container
through polling in each time slot.

• Threshold-Scaling [27]: This method always allocates the
remaining CPUs to the containers averagely as long as
CPU utilization of the PM does not exceed threshold.

• Q-Threshold [47]: Based Q-Learning, Q-Threshold sets
the threshold of CPU utilization dynamically for each
PM. If the CPU utilization on the PM does not reach
the threshold, it will allocate the remaining CPUs to the
containers averagely.

• CVFFC [32]: It saves energy through container migra-
tion for the overloaded and underloaded PMs using a
coefficient of variation (CV) index to select the migrated
container and the destination PM.

• RIAL [35]: It dynamically assigns different weights to the
resources based on their utilization. Once any resource in
the PM is overloaded, it will combine the Multi-Criteria
Decision Making and weights to determine which VMs
should be migrated to which PMs.

• MAGNETIC [36]: The approach uses MARL to deter-
mine whether a PM should be turned off. If the PM is
determined to be off, all containers in the PM will execute
migration.

In addition, we use the Non-power aware solution (NPA) as the
baseline for normalization, which places all containers through
FCFS but with no energy-saving methods taken.

C. Experiment Analysis and Result

1) Placement Algorithm Selection: Fig.5, Fig.6, Fig.7 and
Fig.8 show the comparisons of different placement algorithms
for the energy-saving methods based on the three metrics
including: normalized energy consumption against NPA, the
number of deadline violations and the number of container
rejections. We find that the energy consumption of each
method with different placement algorithms seems almost
the same, but quite different for deadline violations and
rejections. For most energy-saving methods using FCFS, the
number of container rejections is much larger than using other
placement algorithms, because FCFS is too naive to consider
the utilization of multi-dimensional resources. It can be found
that our placement algorithm supports delayed placement of
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Fig. 5. Comparisons of different placement algorithms for CVFFC
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(c) Container Rejection

Fig. 6. Comparisons of different placement algorithms for RIAL
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(b) Container Deadline Violation
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Fig. 7. Comparisons of different placement algorithms for RR-Scaling
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(b) Container Deadline Violation
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Fig. 8. Comparisons of different placement algorithms for Threshold-Scaling

containers. The containers that cannot be placed in the current
time slot can be delayed to the next time slot (at most once) to
avoid turning on PM as much as possible. Thus, our placement
method usually has lower container rejection rate in most
cases. These results also show that different energy-saving
methods in cooperation with these placement algorithms per-
forms different in various metrics. Taking all the three
metrics into account, we select the best placement algorithm
for each energy-saving method as follows: CVFFC+Two-
Side Matching, RIAL+Balance, RR-Scaling+Two-Side Match-
ing and Threshold-Scaling+Our Placement.

2) Training Performance: The running of QMIX can be
divided into two phases: training phase and evaluation phase.
In the training phase, an action is selected using formula

(20); in the evaluation phase, the action is selected using the
trained network and the evaluation is performed every 5000
episodes. In formula (20), there is an important parameter
ϵ representing the probability of randomly performing an
action that can be collected as training data. It will converge
to sub-optimal solutions if ϵ is too small, while the model
can’t converge if ϵ is too large. In view of this, we set this
parameter by exploration decay. That is, initialize a large ϵ at
the beginning of training, and then reduce it gradually to a
small value, and keep on training using the small ϵ to until
converging. Fig.9 shows the trend of reward with episode
under different ϵ. Our design with epsilon = 0.99 → 0.1
enables the model to converge to a bigger reward. In fact,
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Fig. 9. The reward under different ϵ
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TABLE V
COMPARISONS BETWEEN USING Off AND Sleep

Off Sleep
Energy

Consumption(kWh)
Deadline
Violation

Container
Rejection

Energy
Consumption(kWh)

Deadline
Violation

Container
Rejection

trace1 5681 1 46 6946 0 44
trace2 5274 0 18 6671 0 18
trace3 29903 5 8 35519 1 8
trace4 20298 1 11 24593 1 11
trace5 299532 11 0 354404 4 0
trace6 203669 3 0 258837 0 0
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Fig. 12. Performance Comparison with the existing work

the learning rate of the network also affects the result. Fig.10
compares the convergence under different learning rates. The
model can’t converge when LearningRate=1e−5, and it will
converge when LearningRate=1e−3 and LearningRate=
1e−4. Considering convergence and training reward, we select
LearningRate=1e−4 for our experiment.

3) Turn Off or Sleep PM: In general, turning on a PM from
off state takes more time than waking up it from sleep state,
which may cause deadline violation of containers. However,
our method can speed up the running of containers through
vertical scaling, which can compensate for the delay when
turning on a PM. Table.V shows the difference between off
and sleep. It can be clearly seen that using the off state saves
more energy without incurring many more deadline violations.
Therefore, we select off state as our energy-saving state.

4) Performance Comparison: Fig.12 (a) shows the com-
parisons of our method with other works in normalized power
consumption against NPA. It can be found that our method
is more energy-efficient in most traces. In trace1, however,
our method consumes more energy than MAGNETIC and
Q-Threshold. It is because the energy saved by these two
algorithms is achieved at the expense of rejecting much more
containers. In elastic scaling, the energy can be saved only
when the idle CPUs are reasonably allocated, rather than using

them all. One way for energy saving is achieved through
speeding up the execution of all the containers on a PM
through vertical scaling and then turn off the PM as soon
as possible. To validate the effectiveness of our scaling, we
conducted an ablation experiment, as shown in Fig.11. In
this Figure, the normalized saved energy is a negative value
(in blue+orange color) and the normalized total energy is a
positive value (in green color). The blue part is the proportion
of energy saved by vertical scaling while the orange part is
that saved by container placement and migrations. It can be
found that vertical scaling contributes the largest to energy
saving in most traces (even exceeding 40% of the total energy
saved).

Fig.12 (b) shows the comparisons of the number of deadline
violations of the containers. Although there are additional
cost for placement (e.g. delayed running) and migration (e.g.
prolonged running time), vertical scaling can speed up the
running of the containers to compensate for this while saving
more energy. Besides saving more energy, it can be found that
our method has the fewest deadline violations and achieves
the lowest rejection rate of the containers in most traces,
as shown in Fig.12 (b) and Fig.12 (c). In fact, the rejection
rate is highly dependent on the placement algorithm. In our
placement algorithm, we consider balancing multi-dimensional
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TABLE VI
QUANTITATIVE ANALYSIS OF COMPARISON RESULTS

Normalized Average
Energy Consumption(%)

Normalized Average
Deadline Violation(%)

Normalized Average
Rejection(%)

CVFFC 68.3 0.92 13.78
RIAL 68.4 1.96 15.32
MAGNETIC 54.3 2.69 14.48
RR-scaling 68.5 0.14 11.59
Threshod-Scaling 67.1 0.67 7.26
Q-Threshold 60.7 0.86 10.98
Our Method 40.8 0.04 1.3

resources of PMs and delaying the running the containers if
they can’t be placed on any active PM when arriving. Besides,
the tasks on the containers can be finished more quickly
through vertical scaling, so that the resources of the containers
can be released quickly to place more containers.

To further clarify and quantify the comparison results shown
in Fig.12, we draw the Table VI which shows a quantitative
analysis of the results. For each method, we average the nor-
malized energy consumption, normalized deadline violation
and normalized rejection rate against NPA under the six traces.
Our method can save 27.5%, 27.6%, 13.5%, 27.7%, 26.3%,
19.9% more energy consumption than other compared method
respectively, while without sacrificing service quality in terms
of deadline violation and rejections.

VI. CONCLUSION

In this paper, an online scheduling scheme including con-
tainer placement, vertical scaling and migration have been
designed to save the total energy consumption of the servers
in container cloud. To accommodate as many containers as
possible using fewest PMs, we design a container placement
algorithm based on dynamic threshold, resource balancing and
delayed running for container placement. Benefited from the
delayed running, our algorithm usually has a lower container
rejection rate. Since reinforcement learning can well suit the
autoscaling problems, we propose a collaborative MARL al-
gorithm to control the vertical scaling of container, which can
substantially reduce the total energy consumption. To further
reduce energy consumption, we consolidate the containers
onto fewer PMs through migration. Experiment results show
that our method is more energy-efficient than state-of-the-art
algorithms while with lower rates in deadline violations and
rejections for the containers. In future work, we would like
to explore how to use both vertical and horizontal scaling
to achieve better performance. Furthermore, enhancing the
performance of QMIX is another way for improvement.
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